Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23605, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069809

RESUMO

COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Fator 2 Relacionado a NF-E2 , Inflamação , Pulmão
2.
Biomed Pharmacother ; 165: 115126, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37494787

RESUMO

Several medicinal plants have drawn the attention of researchers by its phytochemical composition regarding their potential for treating chronic complications of diabetes mellitus. In this context, plants of the Myrtaceae family popularly used in Brazil for the treatment of diabetes mellitus, including Eugenia sonderiana, have shown beneficial effects due to the presence of phenolic compounds and saponins in their chemical constitution. Thus, the present work aimed to perform the phytochemical characterization of the hydroethanolic extract of E. sonderiana leaves using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS), along with in vitro and in vivo studies of antidiabetic activity. The chemical characterization revealed the presence of phenolic compounds, flavonoids, neolignans, tannins, and saponins. In addition, the extract exhibited minimum inhibitory concentrations of alpha-amylase and alpha-glycosidase higher than the acarbose in the in vitro tests. Also, the in vivo tests revealed a slight increase in body mass in diabetic rats, as well as a significant decrease in water and feed consumption provided by the extract. Regarding serum biochemical parameters, the extract showed significant activity in decreasing the levels of glucose, hepatic enzymes, and triglycerides, in addition to maintaining HDL cholesterol levels within normal ranges, protecting the cell membranes against oxidative damage. Thus, the extract of E. sonderiana leaves was considered promising pharmaceutical ingredient in the production of a phytotherapy medication.


Assuntos
Diabetes Mellitus Experimental , Eugenia , Saponinas , Ratos , Animais , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Compostos Fitoquímicos/uso terapêutico , Fenóis/farmacologia , Folhas de Planta/química , Saponinas/uso terapêutico
3.
Front Chem ; 10: 964446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304744

RESUMO

SARS-CoV-2 triggered a worldwide medical crisis, affecting the world's social, emotional, physical, and economic equilibrium. However, treatment choices and targets for finding a solution to COVID-19's threat are becoming limited. A viable approach to combating the threat of COVID-19 is by unraveling newer pharmacological and therapeutic targets pertinent in the viral survival and adaptive mechanisms within the host biological milieu which in turn provides the opportunity to discover promising inhibitors against COVID-19. Therefore, using high-throughput virtual screening, manually curated compounds library from some medicinal plants were screened against four main drivers of SARS-CoV-2 (spike glycoprotein, PLpro, 3CLpro, and RdRp). In addition, molecular docking, Prime MM/GBSA (molecular mechanics/generalized Born surface area) analysis, molecular dynamics (MD) simulation, and drug-likeness screening were performed to identify potential phytodrugs candidates for COVID-19 treatment. In support of these approaches, we used a series of computational modeling approaches to develop therapeutic agents against COVID-19. Out of the screened compounds against the selected SARS-CoV-2 therapeutic targets, only compounds with no violations of Lipinski's rule of five and high binding affinity were considered as potential anti-COVID-19 drugs. However, lonchocarpol A, diplacol, and broussonol E (lead compounds) were recorded as the best compounds that satisfied this requirement, and they demonstrated their highest binding affinity against 3CLpro. Therefore, the 3CLpro target and the three lead compounds were selected for further analysis. Through protein-ligand mapping and interaction profiling, the three lead compounds formed essential interactions such as hydrogen bonds and hydrophobic interactions with amino acid residues at the binding pocket of 3CLpro. The key amino acid residues at the 3CLpro active site participating in the hydrophobic and polar inter/intra molecular interaction were TYR54, PRO52, CYS44, MET49, MET165, CYS145, HIS41, THR26, THR25, GLN189, and THR190. The compounds demonstrated stable protein-ligand complexes in the active site of the target (3CLpro) over a 100 ns simulation period with stable protein-ligand trajectories. Drug-likeness screening shows that the compounds are druggable molecules, and the toxicity descriptors established that the compounds demonstrated a good biosafety profile. Furthermore, the compounds were chemically reactive with promising molecular electron potential properties. Collectively, we propose that the discovered lead compounds may open the way for establishing phytodrugs to manage COVID-19 pandemics and new chemical libraries to prevent COVID-19 entry into the host based on the findings of this computational investigation.

4.
Curr Drug Metab ; 23(9): 735-756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980054

RESUMO

Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Filogenia , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Nanotecnologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/uso terapêutico
5.
J Evid Based Integr Med ; 27: 2515690X221116407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35929106

RESUMO

The current work investigated the chemical profile, antimalarial potential and capacity of hydroethanolic Senna alata extract (SAE) to reverse hematological and biochemical pertubation in Plasmodium berghei infected mice. Results of the phytochemical analysis revealed the presence of alkaloids, flavonoids, phenolics, tannins, terpenoids, saponins, steroids and cardiac glycosides. Total phenolic and flavonoid content was estimated to be 45.29 ± 2.34 mg GAE/g and 25.22 ± 2.26 mg QE/g respectively. In vitro analysis of the extract also confirmed its antioxidant property. Results of the test for prophylaxis of P. berghei indicated that SAE suppressed parasitemia significantly in treated groups in a dose dependent manner when compared with negative control group. Similarly, SAE improved the mean survival time (MST) and packed cell volume (PCV) of infected mice. The test for curative effect showed that SAE significantly suppressed parasitemia to 4.50 ± 1.05% compared to untreated group 29.83 ± 3.49%. Results of liver and kidney functions indices of treated animals indicated that whereas infection with P. berghei caused increase in the levels of AST, ALT, ALP, urea and creatinine, treatment with SAE significantly reversed the perturbation. Similarly, infected mice were dyslipidemic with concomitant increased activity of HMG CoA reductase and decreased activity of antioxidant enzymes with increase in lipid peroxides levels. However, these alterations were significantly reversed by administration of SAE. Results of this study shows that Senna alata possess antimalarial activity and therefore justify the traditional use of plant for the treatment of malaria.


Assuntos
Antimaláricos , Plasmodium berghei , Animais , Antimaláricos/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Camundongos , Parasitemia/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Folhas de Planta/química
6.
Front Public Health ; 10: 777129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462799

RESUMO

Amelioration of hyperinsulinemia and insulin resistance associated with obesity is a cardinal target for therapeutics. Therefore, we investigated the relation of Fibrilln-1 (FBN1) mRNA expression and hepatic phosphoenolpyruvate caboxykinase (PEPCK) enzyme to the ameliorative impact of oxytocin on obesity-induced diabetes, suggesting glycogenolysis markers in diabetic models. Four groups of forty male Wistar rats were formed (n = 10): a control group fed basal diet and intraperitoneal injections of saline; an oxytocin-injected group; a diet-induced obese group fed a high-fat/high-sugar diet and injected with saline; a diet-induced obese group injected with oxytocin. Depending on blood glucose levels, obese groups were further sub-grouped into prediabetic, and diabetic rats, with 5 rats each, at the ninth and the 16th week of the feeding period, respectively. FBN1 expression and PEPCK activity were determined using the qPCR technique and some biochemical parameters (glycemic, lipid profile, kidney, and liver functions) were determined using kits. Obese groups showed an elevation of brain FBN1 expression, high serum lipid profile, high glucose level, and a deleterious impact on liver and kidney functions. Obese groups showed the stimulator effect of the PEPCK enzyme and time-dependent pathological changes in renal and hepatic tissues. The motor activities were negatively correlated with FBN1 gene expression in prediabetic and diabetic rats. In addition to our previous review of the crucial role of asprosin, here we showed that oxytocin could ameliorate obesity-induced diabetes and decrease FBN1 gene expression centrally to block appetite. Oxytocin caused decreases in PEPCK enzyme activity as well as glycogenolysis in the liver. Therefore, oxytocin has a potential effect on FBN1 expression and PEPCK enzyme activity in the obesity-induced diabetic-rat model.


Assuntos
Diabetes Mellitus Experimental , Obesidade , Ocitocina , Estado Pré-Diabético , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Expressão Gênica , Lipídeos , Masculino , Obesidade/complicações , Obesidade/dietoterapia , Obesidade/tratamento farmacológico , Obesidade/genética , Ocitocina/farmacologia , Fosfoenolpiruvato , Estado Pré-Diabético/etiologia , Estado Pré-Diabético/genética , Ratos , Ratos Wistar
7.
Front Vet Sci ; 9: 783094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425829

RESUMO

The current study investigated the impact of different concentrations of purified egg yolk immunoglobulin Y (IgY) supplemental food on the growth performance, behaviors, cecal contents of Escherichia coli, and the meat quality of broiler chicks. Four dietary groups were given to 180 female Ross broiler chicks at random (n = 45 for each). The control group was fed a standard diet only, whereas the other three experimental groups were fed the same basic diet supplemented with 1,500, 3,000, and 4,000 µg/ml IgY for a duration of 42 days. Significant greater behavioral activities, including, feeding, drinking, and dust bathing (p < 0.05), in the birds fed 4,000 µg/ml of IgY compared to the control group were observed. Greater weight gains of the crop, proventriculus, gizzard, and intestine (p < 0.05) were observed for broiler chicks fed 4,000 µg/ml of IgY when compared to the control group. After 3 weeks of feeding, the groups fed 3,000 and 4,000 µg/ml IgY had significant lower E. coli counts in the muscle and cecal contents (p < 0.05) when compared to the control group. Moreover, dietary supplementation with 4,000 µg/ml IgY in the third week and 3,000 µg/ml IgY in the sixth week resulted in greater weight gain (p < 0.01) when compared to the control group. Also, at week 3, chicks fed 4,000 µg/ml of IgY had a lower feed conversion ratio (FCR) when compared to the control group (p < 0.05). At week 6, chicks fed 3,000 µg/ml of IgY had lower FCR than the control (p < 0.05). The circulating heterophile/lymphocyte ratio was simply altered in birds fed variable IgY concentrations (1,500, 3,000, and 4,000 µg/ml), with no significant differences compared to the control group due to the individual resistance of each bird to physiological stress. The addition of 4,000 µg/ml IgY to the diet enhanced the nutritive value of meat, including protein, fat, and ash content (p < 0.05). Our study concluded that dietary supplementation of 3,000 and/or 4,000 µg/ml IgY improved the growth rates, behavioral activities, intestinal health indices, and meat quality of broiler chicks.

8.
Biol Methods Protoc ; 7(1): bpab026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35146123

RESUMO

Prostate cancer (PCa) is the most common malignancy found in men and the second leading cause of cancer-related death worldwide. Castration-resistant PCa (CRPC) is defined by PCa cells that stop responding to hormone therapy. Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a critical role in the biosynthesis of androgens in humans. Androgen signaling cascade is a principal survival pathway for PCa cells and androgen-deprivation therapy (ADT) remains the key treatment for patients marked with locally advanced and metastatic PCa cells. Available synthetic drugs have been reported for toxicity, drug resistance, and decreasing efficacy. Thus, the design of novel selective inhibitors of CYP17A1 lyase would help circumvent associated side effects and improve pharmacological activities. Therefore, we employed structural bioinformatics techniques via molecular docking; molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics (MD) simulation, and pharmacokinetic study to identify putative CYP17A1 lyase inhibitors. The results of the computational investigation showed that the Prunus dulcis compounds exhibited higher binding energy than the clinically approved abiraterone acetate. The stability of the ligand with the highest binding affinity (quercetin-3-o-rutinoside) was observed during MD simulation for 10 ns. Quercetin-3-o-rutinoside was observed to be stable within the active site of CYP17A1Lyase throughout the simulation period. The result of the pharmacokinetic study revealed that these compounds are promising therapeutic agents. Collectively, this study proposed that bioactive compounds from P. dulcis may be potential selective inhibitors of CYP17A1Lyase in CRPC treatments.

9.
Front Microbiol ; 13: 753054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222322

RESUMO

Cucumber mosaic virus (CMV, Bromoviridae: Cucummovirus), one of the most widespread plant viruses with several hosts, causes huge losses in yield quality and quantity. The occurrence of various CMV strains and high genetic diversity within the virus complicate its management. We describe the population structure of CMV in Nigeria using partial RNA1 and RNA3 gene sequences from three natural hosts: pepper (Capsicum annuum), tomato (Solanum lycopersicum), and watermelon (Citrullus lanatus). One hundred and six leaf samples were obtained from 16 locations across Nigeria, and specific primers were used to amplify the two gene fragments using PCR. Twenty-four samples tested positive for CMV using RNA1 primers, and amplicons were sequenced from 12 isolates, revealing 82.94-99.80% nucleotide and 85.42-100% amino acid sequence similarities within the population. The partial RNA3 fragment, corresponding to the complete coat protein (CP) gene, was sequenced from seven isolates, with 95.79-97.90% and 98.62-100% nucleotide and amino acid intrapopulation similarities, respectively. The isolates belonged to subgroup IB and formed distinct phylogenetic clusters in both gene sets, indicating putative novel strains. Recombination signals, supported by phylogenetic inferences, were detected within the RNA1 dataset (P ≤ 0.05) and identified a recombinant isolate within the Nigerian sequences. No recombination was detected within the CP genes. Population genetics parameters established high diversity within the Nigerian population compared to other isolates worldwide, while selection pressure estimates revealed the existence of negative selection in both gene sets. Although CMV subgroup IB strains were postulated to originate from Asia, this study reveals their prevalence across several hosts from different locations in Nigeria. To our knowledge, this is the first comprehensive description of a recombinant CMV subgroup IB isolate from West Africa, which has implications for its robust detection and overall management.

10.
Front Pediatr ; 9: 738263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956971

RESUMO

Coronavirus disease 2019 (COVID-19) is a recent epidemic disease caused by severe acute respiratory syndrome virus type 2 (SARS-CoV-2). In pregnancy, SARS-Cov-2 infection creates additional alarm due to concerns regarding the potential for transmission from the mother to the baby during both the antenatal and postpartum times. In general, breastfeeding is seldom disallowed because of infection of the mother. However, there are few exceptions with regards to certain infectious organisms with established transmission evidence from mother to infant and the link of infection of a newborn with significant morbidity and mortality. It is confirmed that pregnant women can become infected with SARS-CoV-2, although the debate on the possible vertical transmission of SARS-CoV-2 infection during pregnancy is still open. In this regard, the literature is still poor. On the contrary, the information on the safety of breastfeeding even during infections seems reassuring when the mother takes the necessary precautions. However, there are still answered questions regarding the precautions to be taken during breastfeeding by COVID-19 patients. This paper reviews the existing answers to these and many other questions. This review therefore presents a summary of the present-day understanding of infection with SARS-CoV-2 and discusses the answers around the maternal transmission of COVID-19 and the potential threat of breastfeeding to babies born to infected pregnant mothers. In conclusion, intrauterine transmission of SARS-CoV-2 infection is less likely to occur during pregnancy. Most studies suggest that COVID-19 is not transmitted through breast milk. Correspondingly, COVID-19-infected neonates might acquire the infection via the respiratory route because of the postnatal contact with the mother rather than during the prenatal period. International organizations encourage breastfeeding regardless of the COVID-19 status of the mother or child as long as proper hygienic and safety measures are adhered to so as to minimize the chance of infant infection by droplets and direct contact with the infected mother. Pasteurized donor human milk or infant formula as supplemental feeding can be quite beneficial in the case of mother-infant separation till breastfeeding is safe.

11.
Saudi J Biol Sci ; 28(9): 5145-5156, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466092

RESUMO

The increase of resistant bacteria puts a huge pressure on the antimicrobials in current use. Antimicrobial resistance (AMR) results from antibiotic misuse and abuse over many years and is a global financial burden. New polices must be developed for the use of antimicrobials and to continue research efforts to mitigate AMR. It is essential to target the most harmful bacteria and concentrate on their mechanisms of resistance to develop successful antimicrobials. Essential oils (EOs) are occur naturally in plants and have long been used as antimicrobials, but most have not been researched. This review explores EOs as alternative antimicrobials, investigating their ability to decrease or inhibit biofilm formation, and assess their ability to contribute to AMR control. Low concentrations of EOs can inhibit Gram-positive and Gram-negative pathogenic bacteria. Some EOs have demonstrated strong anti-biofilm activities. If EOs are successful against biofilm formation, particularly in bacteria developing AMR, they could be incorporated into new antimicrobials. Therefore, there is a need to investigate these EOs' potential, particularly for surface disinfection, and against bacteria from food, clinical and non-clinical environments.

12.
J Pharmacol Sci ; 147(1): 62-71, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294374

RESUMO

Owing to the urgent need for therapeutic interventions against the SARS-coronavirus 2 (SARS-CoV-2) pandemic, we employed an in silico approach to evaluate the SARS-CoV-2 inhibitory potential of newly synthesized imidazoles. The inhibitory potentials of the compounds against SARS-CoV-2 drug targets - main protease (Mpro), spike protein (Spro) and RNA-dependent RNA polymerase (RdRp) were investigated through molecular docking analysis. The binding free energy of the protein-ligand complexes were estimated, pharmacophore models were generated and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds were determined. The compounds displayed various levels of binding affinities for the SARS-CoV-2 drug targets. Bisimidazole C2 scored highest against all the targets, with its aromatic rings including the two imidazole groups contributing to the binding. Among the phenyl-substituted 1H-imidazoles, C9 scored highest against all targets. C11 scored highest against Spro and C12 against Mpro and RdRp among the thiophene-imidazoles. The compounds interacted with HIS 41 - CYS 145 and GLU 288 - ASP 289 - GLU 290 of Mpro, ASN 501 of Spro receptor binding motif and some active site amino acids of RdRp. These novel imidazole compounds could be further developed as drug candidates against SARS-CoV-2 following lead optimization and experimental studies.


Assuntos
Biologia Computacional/métodos , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Simulação de Acoplamento Molecular/métodos , SARS-CoV-2/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Imidazóis/química , Imidazóis/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , SARS-CoV-2/química , SARS-CoV-2/metabolismo
13.
Antibiotics (Basel) ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466771

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) strains have veterinary and public health importance as they are responsible for a wide range of difficult to treat infections and food poisoning. Two hundred samples (50 samples each of minced meat, beef luncheon, Karish cheese, and human samples (pus swab from open wounds)) were cultured, and MRSA strains were identified using disk diffusion tests and mecA gene-based PCR. A total of 35% (70/200) of the examined samples were confirmed as coagulase-positive S. aureus in minced meat (46%), beef luncheon (44%), Karish cheese (44%), and human samples (22%). The MRSA strains showed resistance to amoxicillin (91.4%), penicillin (97.1%), cefoxitin (85.7%), cephradine (82.9%), tetracycline (57.2%), and erythromycin (52.8%). More than half of the tested S. aureus isolates harbored the mecA gene. The sequence analysis of the mecA gene from the minced meat, Karish cheese, and human samples revealed high genetic similarities between the S. aureus isolates from these sources. In conclusion, our findings indicate a risk for the transmission of the mecA gene of S. aureus across the food chain between humans and animal food products. Further studies should focus on finding additional epidemiological aspects of the MRSA strains in food chain.

14.
Sci Rep ; 10(1): 19779, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188216

RESUMO

This study aimed to evaluate the prevalence, multidrug-resistance traits, PCR-detection of virulence, and antibiotic-resistance genes of E. coli isolated from secondary infections following FMD-outbreak in cattle. A total of 160 random samples were gathered from private dairy farms in Damietta Province, Egypt. The specimens were subjected to bacteriological examination, serotyping, congo-red binding assay, antibiogram-testing, and PCR-monitoring of virulence-determinant genes (tsh, phoA, hly, eaeA, sta, and lt) as well as the antibiotic-resistance genes (blaTEM, blaKPC, and blaCTX). The prevalence of E. coli was 30% (n = 48) distributed in 8 serogroups (40/48, 83.3%), while 8 isolates (8/48, 16.6%) were untypable. Besides, 83.3% of the examined isolates were positive for CR-binding. The tested strains harbored the virulence genes phoA, hly, tsh, eaeA, sta, and lt with a prevalence of 100% and 50%, 45.8%, 25%, 8.4%, and 6.2%, respectively. Furthermore, 50% of the recovered strains were multidrug-resistant (MDR) to penicillins, cephalosporins, and carbapenems, and are harboring the blaTEM, blaCTX, and blaKPC genes. Moreover, 25% of the examined strains are resistant to penicillins, and cephalosporins, and are harboring the blaTEM and blaCTX genes. To the best of our knowledge, this is the first report concerning the E. coli secondary bacterial infections following the FMD-outbreak. The emergence of MDR strains is considered a public health threat and indicates complicated treatment and bad prognosis of infections caused by such strains. Colistin sulfate and levofloxacin have a promising in vitro activity against MDR-E. coli.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Animais , Carbapenêmicos/farmacologia , Bovinos , Cefalosporinas/farmacologia , Penicilinas/farmacologia , Reação em Cadeia da Polimerase , Virulência/genética , Fatores de Virulência/genética
15.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1835-1850, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32996177

RESUMO

The use of antibiotics to maintain animal well-being, promote growth and improve efficiency has been practised for more than 50 years. However, as early as the 1950s, researchers identified concern on the development of resistant bacteria for the antibiotics streptomycin and tetracycline used in turkeys and broilers respectively. These findings laid the groundwork for agricultural officials to impose stricter regulatory parameters on the use of antibiotics in poultry feeds. Probiotics are live micro-organisms included in the diet of animals as feed additives or supplements. Commonly known as a direct-fed microbial, probiotics provide beneficial properties to the host, primarily through action in the gastrointestinal tract (GIT) of the animal. Supplementation of probiotics in the diet can improve animal health and performance, through contributions to gut health and nutrient use. For instance, supplementation of probiotics has been demonstrated to benefit farm animals in immune modulation, structural modulation and increased cytokine production, which positively affect the intestinal mucosal lining against pathogens. Bacillus subtilis has been a popular bacterium used within the industry and was shown to improve intestinal villus height. Increasing the villus height and structure of the crypts in the GIT allows for the improvement of nutrient digestion and absorption. Tight junctions maintain important defences against pathogenic bacteria and cellular homeostasis. Heat stress can be a major environmental challenge in the poultry industry. Heat stress causes the bird to fluctuate its internal core temperature beyond their comfort zone. To overcome such challenges, poultry will attempt to balance its heat production and dissipation through behavioural and physiological adaptation mechanisms.


Assuntos
Probióticos , Ração Animal/análise , Animais , Bacillus subtilis , Galinhas , Aves Domésticas , Perus
16.
Front Vet Sci ; 7: 350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760743

RESUMO

Drugs that are commonly used in poultry farms can potentially cause a detrimental effect on meat consumers as a result of chemical residues. Therefore, seeking a natural alternative is crucial for the health of the consumers. The egg yolk immunoglobulin Y (IgY) is a promising natural replacement for antibiotics in the broilers' diet. There is a scarce focus on the influence of probiotics and IgY on the quality and the nutritive values of broiler meat and whether it can efficiently displace the anti-microbial power of antibiotics. Herein we used 40 Ross chicks (1.2 ± 0.43 days old) and separated them into four groups with variant feed additives (basal diet "control," probiotic, IgY, and probiotic + IgY). Our findings showed that the combination of probiotic and IgY supplementation enhanced the carcass quality traits and decreased the pH values that could retard spoilage due to bacteria and improve shelf life and meat quality. The same group also achieved a significant reduction in thiobarbituric acid value, indicating an improvement of meat quality. Moreover, color, shear force, water holding capacity, and cooking loss were most acceptable in broiler meat supplemented with IgY, which confirmed the highest carcass quality. Notably, the weight gain in the combination group has been greatly increased. Also, the protein percentage was the highest (22.26 ± 0.29, P < 0.001) in this combined supplementation group, which revealed the highest nutritive values. Staphylococcus aureus and Escherichia coli could not be detected in the meat of the probiotics group and/or in the combined treatment group. Interestingly, the IgY group showed an evidence of the killing power (log colony-forming units per milliliter) of S. aureus and Listeria monocytogenes at 1,500 µg/ml. Our findings, in vitro as well as in vivo, revealed that the combination group had antimicrobial bioactivity and enhanced the chickens' immunity. Therefore, IgY, a novel trend of feed additives, can be used to limit drugs. Additionally, the mortality percentage recorded was zero in all groups that received feed supplementation, while the combination group reached the best financial advantages. We concluded that feeding IgY powder with probiotic is a frontier to improve the productivity, immunity, and meat quality of broilers.

17.
AMB Express ; 10(1): 99, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472209

RESUMO

The purpose of this study was to investigate the prevalence, antibiotic resistance and certain virulence genes of the most predominant bacterial pathogens causing BRD. A total of 225 calves; 55 apparently healthy and 170 diseased; were sampled. Bacteriological examination, antimicrobial susceptibility testing and PCR based detection of some virulence genes were performed. In addition, the serotyping of E. coli was performed using the slide agglutination test. The most predominant bacterial pathogens retrieved from apparently healthy calves were E. coli (16.4%) and S. aureus (10.9%), and in pneumonic calves were E. coli (23.5%), P. vulgaris (12.4%) and S. aureus (11.8%). The most prevalent virulence gene in E. coli was the fimH gene (100%), followed by eaeA gene (24.5%) and hly gene (20.4%). All the examined S. aureus strains harbored spa and coa genes; likewise, all P. multocida strains harbored toxA gene. The majority of the isolated strains displayed remarkable sensitivity to norfloxacin and enrofloxacin; furthermore, the retrieved E. coli strains exhibited multidrug-resistance to gentamicin, erythromycin, streptomycin and trimethoprim-sulphamethoxazole, in addition, the isolated S. aureus and P. aeruginosa strains showed multidrug-resistance to amoxicillin, ampicillin and tetracycline. E. coli serogroups including O18, O143, O1, and O6 were retrieved from pneumonic calves as the first report in Egypt. In conclusion, the synergism between the conventional and genotypic analysis is an effective gadget for the characterization of bacterial pathogens causing BRD. Continuous surveillance of antimicrobial susceptibility is essential to select the drug of choice due to the development of multidrug-resistant strains.

18.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 549-557, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32017274

RESUMO

We evaluated the effect of prebiotic or probiotic as feed additives on florfenicol kinetic in broilers feed. Unsexed two hundred, thirty-five-day-old broiler chickens, were put in four equal groups (n = 50). The first group was administrated florfenicol intravenous at 30 mg/kg body weight (BW) only once dosage without pre- or probiotic administration to determine the bioavailability. While, the second group was administrated florfenicol (intracrop routes; a dosage of 30 mg/kg BW for five progressive days) without pre- or probiotic co-administration. The third and the fourth groups were administrated the same dose of florfenicol (intracrop route) for five successive days, followed by 10 days of prebiotic or probiotic treatment respectively. The plasma florfenicol % was identified by high-pressure liquid chromatography (HPLC) after the first florfenicol administration (intravenous or intracrop routes) in all groups. Then, the residual levels of florfenicol were determined in liver, kidney and muscle tissues from the second, third and fourth groups which were exposed to florfenicol orally. Our results demonstrated that broilers pre-treated with prebiotic or probiotic significantly increased Cmax , AUC0- t , AUC0-inf as well as AUMC values, while significant drop was recorded in V/F and CL/F. Prebiotic or probiotic influenced the cumulative effect of florfenicol in liver and kidney tissues of treated birds.


Assuntos
Antibacterianos/farmacocinética , Galinhas , Prebióticos , Probióticos , Tianfenicol/análogos & derivados , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antibacterianos/administração & dosagem , Dieta/veterinária , Interações Medicamentosas , Tianfenicol/administração & dosagem , Tianfenicol/farmacocinética
19.
Vet World ; 12(8): 1319-1326, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31641314

RESUMO

BACKGROUND AND AIM: Ivermectin (IVM) has been used in veterinary practice to control different parasitic infestations over the past two decades. This study aimed to re-assess the acaricidal effects of IVM, as well as to evaluate its efficacy against Rhipicephalus (Boophilus) annulatus by determining the mortality rate, γ-aminobutyric acid (GABA) level, and oxidative/antioxidative homeostasis (malondialdehyde [MDA] levels and glutathione S-transferase [GST] activities). MATERIALS AND METHODS: Adult female Rhipicephalus (Boophilus) annulatus were picked from cattle farms in El-Beheira Governorate, Egypt. Ticks were equally allocated to seven experimental groups to assess the acaricidal potential of IVM chemotherapeutics in controlling R. (B.) annulatus. IVM was prepared at three concentrations (11.43, 17.14, and 34.28 µM of IVM). RESULTS: Mortality rate was calculated among the treated ticks. In addition, GABA, GST, and MDA biomarker levels were monitored. The data revealed a noticeable change in GST activity, a detoxification enzyme found in R. (B.) annulatus, through a critical elevation in mortality percentage. CONCLUSION: IVM-induced potent acaricidal effects against R. (B.) annulatus by repressing GST activity for the initial 24 h after treatment. Collectively, this paper reports the efficacy of IVM in a field population of R. (B.) annulatus in Egypt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...