Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 9(4): 356-7, 2010 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-20106726

RESUMO

Comments are made and new insights are provided on the key role played by endogenous and exogenous electric fields, where the former starts and conducts the repairing chain, while the latter is able to scramble the completion of the repair process and, as a consequence, may have important potential as a radiation sensitizer for clinical application.


Assuntos
Reparo do DNA , DNA/metabolismo , Transdução de Sinais , DNA/química , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Modelos Biológicos , Doses de Radiação
2.
DNA repair (Amst) ; 4(4): 356-357, 2010.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1062339

RESUMO

Comments are made and new insights are provided on the key role played by endogenous and exogenouselectric fields, where the former starts and conducts the repairing chain, while the latter is able to scramblethe completion of the repair process and, as a consequence, may have important potential as a radiationsensitizer for clinical application.


Assuntos
DNA , Radiação Ionizante , Radioterapia
3.
Oncogene ; 26(2): 186-97, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-16819506

RESUMO

Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumours (malignant gliomas). The mechanism of TMZ-induced glioma cell death is unknown. Here, we show that malignant glioma cells undergo apoptosis following treatment with the methylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and TMZ. Cell death determined by colony formation and apoptosis following methylation is greatly stimulated by p53. Transfection experiments with O(6)-methylguanine-DNA methyltransferase (MGMT) and depletion of MGMT by O(6)-benzylguanine showed that, in gliomas, the apoptotic signal originates from O(6)-methylguanine (O(6)MeG) and that repair of O(6)MeG by MGMT prevents apoptosis. We further demonstrate that O(6)MeG-triggered apoptosis requires Fas/CD95/Apo-1 receptor activation in p53 non-mutated glioma cells, whereas in p53 mutated gliomas the same DNA lesion triggers the mitochondrial apoptotic pathway. This occurs less effectively via Bcl-2 degradation and caspase-9, -2, -7 and -3 activation. O(6)MeG-triggered apoptosis in gliomas is a late response (occurring >120 h after treatment) that requires extensive cell proliferation. Stimulation of cell cycle progression by the Pasteurella multocida toxin promoted apoptosis whereas serum starvation attenuated it. O(6)MeG-induced apoptosis in glioma cells was preceded by the formation of DNA double-strand breaks (DSBs), as measured by gammaH2AX formation. Glioma cells mutated in DNA-PK(cs), which is involved in non-homologous end-joining, were more sensitive to TMZ-induced apoptosis, supporting the involvement of DSBs as a downstream apoptosis triggering lesion. Overall, the data demonstrate that cell death induced by TMZ in gliomas is due to apoptosis and that determinants of sensitivity of gliomas to TMZ are MGMT, p53, proliferation rate and DSB repair.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Dano ao DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Glioma/patologia , Guanina/análogos & derivados , Western Blotting , Neoplasias Encefálicas/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Dacarbazina/farmacologia , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Citometria de Fluxo , Glioma/metabolismo , Guanina/metabolismo , Humanos , Metilnitronitrosoguanidina/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/farmacologia , Temozolomida , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Cell Death Differ ; 9(10): 1099-107, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12232798

RESUMO

Cyclobutane pyrimidine dimers (CPDs) are directly involved in signaling for UV-induced apoptosis in mammalian cells. Failure to remove these lesions, specially those located at actively expressing genes, is critical, as cells defective in transcription coupled repair have increased apoptotic levels. Thus, the blockage of RNA synthesis by lesions is an important candidate event triggering off active cell death. In this work, wild-type and XPB mutated Chinese hamster ovary (CHO) cells expressing a marsupial photolyase, that removes specifically CPDs from the damaged DNA, were generated, in order to investigate the importance of this lesion in both RNA transcription blockage and apoptotic induction. Photorepair strongly recovers RNA synthesis in wild-type CHO cell line, although the resumption of transcription is decreased in XPB deficient cells. This recovery is accompanied by the prevention of cells entering into apoptosis. These results demonstrate that marsupial photolyase has access to CPDs blocking RNA synthesis in vivo, and this may be affected by the presence of a mutated XPB protein.


Assuntos
Apoptose/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/deficiência , RNA Polimerases Dirigidas por DNA/metabolismo , Células Eucarióticas/enzimologia , Dímeros de Pirimidina/metabolismo , RNA/biossíntese , Animais , Apoptose/efeitos da radiação , Células CHO , Cricetinae , DNA Helicases , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/efeitos da radiação , Desoxirribodipirimidina Fotoliase/genética , Relação Dose-Resposta à Radiação , Células Eucarióticas/efeitos da radiação , Mutação/genética , Dímeros de Pirimidina/antagonistas & inibidores , RNA/genética , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA