Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1519, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707548

RESUMO

The objective of this study was to verify the physiological behavior and development of maize plants under hydric deficit inoculated with the AMF Rhizophagus clarus and Claroideoglomus etunicatum and the commercial inoculant ROOTELLA BR in nonsterilized soil as a strategy to mitigate the effects of drought in the crop. Corn seeds were grown and inoculated with R. clarus, C. etunicatum and the commercial inoculant ROOTELLA BR separately at sowing. The plants were grown in a greenhouse and submitted to water deficit in stage V3, keeping the pots at 20% field capacity for 10 days. The first analyses were performed, followed by reirrigation for 2 days, and the analyses were performed again. The experiment was a double factorial, with 2 water treatments (irrigated and water deficit) × 4 inoculation treatments (control, ROOTELLA BR, R. clarus, C. etunicatum) × 5 replicates per treatment, totaling 40 vessels. The results indicate that the plants were able to recover favorably according to the physiological data presented. It is noted that in inoculated plants, there was no damage to the photosynthetic apparatus. These data demonstrate that AMF contribute greatly to better plant recovery after a dry period and a new irrigation period. Inoculation with AMF favors postwater stress recovery in plants.


Assuntos
Micorrizas , Micorrizas/fisiologia , Zea mays/microbiologia , Plantas , Fotossíntese , Solo , Fungos
2.
Sci Rep ; 12(1): 16467, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183028

RESUMO

Water deficit (WD) combined with high temperature (HT) is the major factor limiting agriculture worldwide, and it is predicted to become worse according to the current climate change scenario. It is thus important to understand how current cultivated crops respond to these stress conditions. Here we investigated how four soybean cultivars respond to WD and HT isolated or in combination at metabolic, physiological, and anatomical levels. The WD + HT increased the level of stress in soybean plants when compared to plants under well-watered (WW), WD, or HT conditions. WD + HT exacerbates the increases in ascorbate peroxidase activity, which was associated with the greater photosynthetic rate in two cultivars under WD + HT. The metabolic responses to WD + HT diverge substantially from plants under WW, WD, or HT conditions. Myo-inositol and maltose were identified as WD + HT biomarkers and were connected to subnetworks composed of catalase, amino acids, and both root and leaf osmotic potentials. Correlation-based network analyses highlight that the network heterogeneity increased and a higher integration among metabolic, physiological, and morphological nodes is observed under stress conditions. Beyond unveiling biochemical and metabolic WD + HT biomarkers, our results collectively highlight that the mechanisms behind the acclimation to WD + HT cannot be understood by investigating WD or HT stress separately.


Assuntos
Glycine max , Água , Aminoácidos , Ascorbato Peroxidases , Catalase , Inositol , Maltose , Glycine max/metabolismo , Estresse Fisiológico , Temperatura , Água/metabolismo
3.
J Environ Sci Health B ; 57(1): 71-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114885

RESUMO

Biodiversity in the Brazilian Cerrado biome has been declining sharply with the continued expansion of agriculture and the excessive use of herbicides. Thus, the aim of this study was to evaluate the morphophysiological and biochemical responses in Dipteryx alata plants to various doses of the herbicide 2,4-D. Specific biomarkers that characterize the phytoindicator potential of this species were determined. Gas exchange, chlorophyll a fluorescence, photosynthetic pigments, and the activities of antioxidant enzymes and cellulase were performed after 24, 96 and/or 396 hours after 2,4-D application (HAA). The herbicide caused higher antioxidant enzymatic activity 24 HAA and damage to the photosynthetic machinery after 96 HAA. Reduction in gas exchange, chlorophyll content, and photochemical traits were observed. Increased respiratory rates, non-photochemical quenching, and carotenoid concentrations in 2,4-D-treated plants were important mechanisms in the defense against the excess energy absorbed. Furthermore, the absence of leaf symptoms suggested tolerance of D. alata to 2,4-D. Nevertheless, changes in the photosynthetic and biochemical metabolism of D. alata are useful as early indicators of herbicide contamination, especially in the absence of visual symptoms. These results are important for early monitoring of plants in conserved areas and for preventing damage to sensitive species.


Assuntos
Herbicidas , Árvores , Ácido 2,4-Diclorofenoxiacético/toxicidade , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brasil , Clorofila/metabolismo , Clorofila A/metabolismo , Ecossistema , Herbicidas/farmacologia , Fotossíntese , Folhas de Planta/metabolismo , Árvores/metabolismo
4.
Ciênc. rural (Online) ; 52(10): e20210380, 2022. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364725

RESUMO

The study evaluated the efficacy and soybean spectral responses to fifteen foliar fungicide mixtures labeled to control Asian soybean rust. Canopy level reflectance was measured using a multispectral camera onboard a multirotor drone before and two hours after each spray. The third application of fungicides improved control of soybean rust and increased yield. Nevertheless, up to three consecutive foliar fungicides applications did not affect the reflectance of soybean plants at visible and infrared wavelengths. Thus, drones can be a viable strategy for data acquisition regardless of the application of the fungicides.


Esse estudo avaliou a eficácia e as respostas espectrais de plantas de soja a quinze misturas de fungicidas utilizados no controle da ferrugem asiática da soja (FAS). A refletância do nível do dossel foi medida usando uma câmera multiespectral a bordo de um drone multirotor antes e duas horas após cada pulverização. A terceira aplicação de fungicidas melhorou o controle de FAS e aumentou a produtividade. Porém, três aplicações foliares consecutivas de fungicidas não afetaram a refletância de plantas de soja nos comprimentos de onda visível e infravermelho. Assim, drones podem ser uma estratégia viável para aquisição de dados independentemente da aplicação de fungicidas.


Assuntos
Glycine max/fisiologia , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/análise , Agricultura Sustentável , Imageamento Hiperespectral/métodos
5.
Physiol Plant ; 172(2): 1301-1320, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33554371

RESUMO

Little is known about the role of light intensity in modulating plant responses to stress due to water deficit (WD). Thus, the objective of this study was to determine the WD and contrasting irradiance effects on the physiology, anatomy, and grain yield of soybean plants. The experimental design was a randomized block in a growth chamber and a 2 × 2 factorial treatment arrangement: 90% (well-watered, WW) and 40% (WD) of soil field capacities (FC); and 750 (medium irradiance, MI) and 1500 (higher irradiance, HI) µmol (photons) m-2  s-1 irradiance. The WD caused a lower photosynthetic rate - as well as observed in the light curve and in the relative parameters, such as apparent quantum efficiency -, less investment in shoot biomass and pollen grain germination, resulting in lower grain yield. However, there was an increase in non-photochemical energy dissipation, a higher concentration of total soluble sugars, proline, and malondialdehyde. The WD + MI-soybean plants developed thicker spongy parenchyma (related to higher mesophilic conductance of CO2 ). In the WW + HI condition the palisade parenchyma was thicker, conferring maintenance of photosynthetic efficiency. In addition, there was an increase in the activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes in leaves due to HI, regardless of FC. This induced higher energy expenditure, reflected in the reduction of the number of leaf and branches, leaf area, dry mass of leaves and stem in the WW + HI. Interestingly, these strategies of osmotic adjustment, photoprotection, and antioxidant defenses act together in the WD + HI.


Assuntos
Glycine max , Água , Ascorbato Peroxidases/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Glycine max/metabolismo
6.
Pestic Biochem Physiol ; 172: 104754, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518047

RESUMO

Fungicides are widely used to control diseases in soybean crops. We hypothesized that fungicides applied to healthy soybean plants compromise the plant's physiology, affect the reproductive process and reduce crop productivity. We aimed to evaluate the photosynthetic process, pollen grain viability and yield components of soybean plants exposed to three commercial fungicides. The experiment was performed twice using soybean cultivar SYN 1378C, disease-free plants, with four treatments: i) control treatment (without any fungicide application); ii) cyproconazole 150 g L-1 + difenoconazole 250 g L-1 (CPZ + DFZ; 250 mL ha-1; without adjuvant); iii) azoxystrobin 300 g Kg-1 + benzovindiflupyr 150 g Kg-1 (AZB + BZP; 200 g ha-1; Nimbus® adjuvant (Syngenta)); and iv) propiconazole 250 g L-1 + difenoconazole 250 g L-1 (PPZ + DFZ; 150 mL ha-1; without adjuvant) in both soybean pre-bloom (V8) and bloom (R1) developmental stages. The experimental design was randomized blocks with four replicates. Phytotoxicity, gas exchange and chlorophyll a fluorescence traits, pollen grain viability, pollen grain germination, flower abortion and soybean production components were evaluated. The fungicides did not affect the physiological traits, pollen grain germination and crop yield.


Assuntos
Fungicidas Industriais , Clorofila A , Fungicidas Industriais/farmacologia , Fotossíntese , Doenças das Plantas , Glycine max
7.
Ecotoxicology ; 29(2): 217-225, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32030573

RESUMO

The expansion of land use for agricultural interests and the excessive use of herbicides are among the causes of biodiversity losses in the Brazilian Cerrado biome. Therefore, we aimed to test the hypothesis that Dipteryx alata Vogel, a common species in this biome, is sensitive to nicosulfuron because of its high phytotoxicity. We evaluated physiological, biochemical and morphological responses in D. alata plants exposed to increasing doses of the herbicide. Young plants were transplanted to 10 L pots containing substrate composed of soil and sand (2:1) after fertilization. After an acclimation period, the following doses of nicosulfuron were applied: 0 (control), 6, 12, 24, 48, and 60 g a.e. ha-1. The experiment was conducted in a randomized block design factorial scheme with six doses of nicosulfuron, three evaluation times, and five replicates per treatment. The effects of the herbicide were assessed by measuring gas exchange, chlorophyll a fluorescence, photosynthetic pigments, membrane permeability, antioxidant enzymes and acetolactate synthase. Nicosulfuron altered the photosynthetic machinery and enzymatic metabolism of D. alata. Reductions in physiological traits, increased catalase and ascorbate peroxidase activities, enhanced malondialdehyde concentrations rate of electrolyte leakage and decreased acetolactate synthase activity in response to nicosulfuron all suggest that D. alata is sensitive to this herbicide.


Assuntos
Dipteryx/fisiologia , Herbicidas/toxicidade , Piridinas/toxicidade , Compostos de Sulfonilureia/toxicidade , Agricultura , Antioxidantes/metabolismo , Brasil , Catalase/metabolismo , Clorofila A , Fotossíntese
8.
Physiol Plant ; 168(2): 456-472, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31600428

RESUMO

Soybean is the most widely grown oilseed in the world. It is an important source of protein and oil which are derived from its seeds. Drought stress is a major constraint to soybean yields. Finding alternative methods to mitigate the water stress for soybean is useful to maintain adequate crop yields. The aim of this study was to evaluate the morpho-physiological, biochemical and metabolic changes in soybean plants in two ontogenetic stages, under exposure to water deficit and treatment with zinc sulphate (ZS), potassium phosphite (PP) or hydrogen sulphide (HS). We carried out two independent experiments in the V4 and R1 development stages consisting of the following treatments: well-watered control (WW, 100% maximum water holding capacity, MWHC), water deficit (WD, 50% MWHC), PP + WW, PP + WD, HS + WW, HS + WD, ZS + WW and ZS + WD. The experimental design consisted of randomized blocks with eight treatments with five replicates. Morphological, physiological and metabolic analyses were performed 8 days after the start of the treatments for both experiments. We identified two tolerance mechanisms acting in response to compound application during water stress: the first involved the upregulation of antioxidant enzyme activity and the second involved the accumulation of soluble sugars, free amino acids and proline to facilitate osmotic adjustment. Both mechanisms are related to the maintenance of the photosynthetic parameters and cell membrane integrity. This report suggests the potential agricultural use of these compounds to mitigate drought effects in soybean plants.


Assuntos
Glycine max/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Fosfitos/farmacologia , Compostos de Potássio/farmacologia , Estresse Fisiológico , Sulfato de Zinco/farmacologia , Secas , Folhas de Planta , Glycine max/fisiologia , Água
9.
Plant Physiol Biochem ; 129: 310-322, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29925047

RESUMO

Crambe abyssinica is widely cultivated in the off-season in the Midwest region of Brazil with great potential for biodeisel production. Low precipitation is characteristic of this region, which can drastically affect the productivity of C. abyssinica. Signaling molecules, such as nitric oxide (NO), can potentially alleviate the effects of water stress on plants. Here we test whether nitric oxide, applied by donor sodium nitroprusside (SNP), can alleviate the occurrence of water deficit damages in Crambe plants and maintain physiological and biochemical processes. Crambe plants were sprayed with three doses of SNP (0, 75, and 150 µM) and were submitted to two water levels (100% and 50% of the maximum water holding capacity). After 32 and 136 h, leaves were analyzed to evaluate the concentration of NO, water relations, gas exchange, chlorophyll a fluorescence, chloroplastidic pigments, proline, malondialdehyde, hydrogen peroxide, superoxide anions, and the antioxidant enzymes activity. Application of SNP allowed the maintenance of gas exchange, chlorophyll fluorescence parameters, and activities of antioxidant enzymes in plants exposed to water deficit, as well as increased the concentration of NO, proline, chloroplastidic pigments and osmotic potential. The application of SNP also decreased the concentration of malondialdehyde and reactive oxygen species in plants submitted to water deficit. Thus, the application of SNP prevented the occurrence of symptoms of water deficit in Crambe plants, maintaining the physiological and biochemical responses at reference levels, even under stress conditions.


Assuntos
Crambe (Planta)/metabolismo , Óxido Nítrico/metabolismo , Clorofila A/metabolismo , Crambe (Planta)/efeitos dos fármacos , Desidratação , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Nitroprussiato/farmacologia , Pressão Osmótica/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo
10.
Pestic Biochem Physiol ; 137: 42-48, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28364803

RESUMO

The use of fungicides in maize has been more frequent due to an increase in the incidence of diseases and also the possible physiological benefits that some of these products may cause. However, some of these products (e.g., strobilurins and triazoles) may interfere with physiological processes and the formation of reproductive organs. Therefore, the effect of these products on plants at different developmental stages needs to be better understood to reduce losses and maximize production. The effect of the fungicide pyraclostrobin+epoxiconazole (P+E) was evaluated at different growth stages in meiosis, pollen grain viability and germination, physiology, and production of maize plants in the absence of disease. An experiment was carried out with the hybrid DKB390 PROII and the application of pyraclostrobin+epoxiconazole at the recommended dose and an untreated control at 3 different timings (S1 - V10; S2 - V14; S3 - R1) with 5 replications. Gas exchange, chlorophyll fluorescence, pollen viability and germination, as well as the hundred-grain weight were evaluated. Anthers were collected from plants of S1 for cytogenetic analysis. The fungicide pyraclostrobin+epoxiconazole reduced the viability of pollen grains (1.4%), but this was not enough to reduce production. Moreover, no differences were observed in any of the other parameters analyzed, suggesting that P+E at the recommended dose and the tested stages does not cause toxic effects.


Assuntos
Carbamatos/farmacologia , Compostos de Epóxi/farmacologia , Fungicidas Industriais/farmacologia , Pólen/efeitos dos fármacos , Pirazóis/farmacologia , Triazóis/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Relação Dose-Resposta a Droga , Transporte de Elétrons/efeitos dos fármacos , Germinação/efeitos dos fármacos , Pólen/fisiologia , Estrobilurinas , Zea mays/crescimento & desenvolvimento
11.
Ecotoxicol Environ Saf ; 141: 242-250, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28359990

RESUMO

The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha-1. The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, YII, and Fv/Fm) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action.


Assuntos
Bauhinia/efeitos dos fármacos , Diurona/toxicidade , Monitoramento Ambiental/métodos , Herbicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Bauhinia/metabolismo , Bauhinia/fisiologia , Bauhinia/ultraestrutura , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...