Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 40: e00816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020726

RESUMO

In the present study, silver nanoparticles (AgNPs) were biosynthesized using the supernatant and the intracellular extract of Cupriavidus necator, Bacillus megaterium, and Bacillus subtilis. The characterization of the AgNPs was carried out using UV-Vis spectroscopy, FTIR, DLS and TEM. Resazurin microtiter-plate assay was used to determine the antimicrobial action of AgNPs against Escherichia coli. UV-Visible spectra showed peaks between 414 and 460 nm. TEM analysis revealed that the synthesized AgNPs showed mostly spherical shapes. DLS results determined sizes from 20.8 to 118.4 nm. The highest antimicrobial activity was obtained with the AgNPs synthesized with supernatant rather than those using the intracellular extract. Therefore, it was determined that the bacterial species, temperature, pH, and type of extract (supernatant or intracellular) influence the biosynthesis. This synthesis thus offers a simple, environmentally friendly, and low-cost method for the production of AgNPs, which can be used as antibacterial agents.

2.
Biotechnol Rep (Amst) ; 37: e00785, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36785536

RESUMO

The potential for the application of metal-containing nanomaterials at the nanoscale promotes the opportunity to search for new methods for their elaboration, with special attention to those sustainable methods. In response to these challenges, we have investigated a new method for green synthesis of cuprous oxide nanoparticles (Cu2O NPs) using Myrciaria dubia juice as an organic reductant and, comparing it with chemical synthesis, evaluating in both cases the influence of the volume of the organic (juice) and chemical (ascorbic acid) reductants, for which a large number of techniques such as spectrophotometry, EDX spectrometry, TEM, SEM, DLS, FTIR spectroscopy have been used. Likewise, the nanomaterial with better morphological characteristics, stability, and size homogeneity has been applied in the functionalization of textiles by means of in situ and post-synthesis impregnation methods. The success of the synthesis process has been demonstrated by the antimicrobial activity (bacteria and fungi) of textiles impregnated with Cu2O NPs.

3.
Pharmaceutics ; 13(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959381

RESUMO

Chronic and non-healing wounds demand personalized and more effective therapies for treating complications and improving patient compliance. Concerning that, this work aims to develop a suitable chitosan-based thermo-responsive scaffold to provide 24 h controlled release of Dexketoprofen trometamol (DKT). Three formulation prototypes were developed using chitosan (F1), 2:1 chitosan: PVA (F2), and 1:1 chitosan:gelatin (F3). Compatibility tests were done by DSC, TG, and FT-IR. SEM was employed to examine the morphology of the surface and inner layers from the scaffolds. In vitro release studies were performed at 32 °C and 38 °C, and the profiles were later adjusted to different kinetic models for the best formulation. F3 showed the most controlled release of DKT at 32 °C for 24 h (77.75 ± 2.72%) and reduced the burst release in the initial 6 h (40.18 ± 1.00%). The formulation exhibited a lower critical solution temperature (LCST) at 34.96 °C, and due to this phase transition, an increased release was observed at 38 °C (88.52 ± 2.07% at 12 h). The release profile for this formulation fits with Hixson-Crowell and Korsmeyer-Peppas kinetic models at both temperatures. Therefore, the developed scaffold for DKT delivery performs adequate controlled release, thereby; it can potentially overcome adherence issues and complications in wound healing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...