Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Stud Health Technol Inform ; 310: 274-278, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269808

RESUMO

Continuous intraoperative monitoring with electroencephalo2 graphy (EEG) is commonly used to detect cerebral ischemia in high-risk surgical procedures such as carotid endarterectomy. Machine learning (ML) models that detect ischemia in real time can form the basis of automated intraoperative EEG monitoring. In this study, we describe and compare two time-series aware precision and recall metrics to the classical precision and recall metrics for evaluating the performance of ML models that detect ischemia. We trained six ML models to detect ischemia in intraoperative EEG and evaluated them with the area under the precision-recall curve (AUPRC) using time-series aware and classical approaches to compute precision and recall. The Support Vector Classification (SVC) model performed the best on the time-series aware metrics, while the Light Gradient Boosting Machine (LGBM) model performed the best on the classical metrics. Visual inspection of the probability outputs of the models alongside the actual ischemic periods revealed that the time-series aware AUPRC selected a model more likely to predict ischemia onset in a timely fashion than the model selected by classical AUPRC.


Assuntos
Isquemia , Monitorização Intraoperatória , Humanos , Fatores de Tempo , Área Sob a Curva , Eletroencefalografia
2.
Med Image Anal ; 92: 103062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086236

RESUMO

Large-scale volumetric medical images with annotation are rare, costly, and time prohibitive to acquire. Self-supervised learning (SSL) offers a promising pre-training and feature extraction solution for many downstream tasks, as it only uses unlabeled data. Recently, SSL methods based on instance discrimination have gained popularity in the medical imaging domain. However, SSL pre-trained encoders may use many clues in the image to discriminate an instance that are not necessarily disease-related. Moreover, pathological patterns are often subtle and heterogeneous, requiring the ability of the desired method to represent anatomy-specific features that are sensitive to abnormal changes in different body parts. In this work, we present a novel SSL framework, named DrasCLR, for 3D lung CT images to overcome these challenges. We propose two domain-specific contrastive learning strategies: one aims to capture subtle disease patterns inside a local anatomical region, and the other aims to represent severe disease patterns that span larger regions. We formulate the encoder using conditional hyper-parameterized network, in which the parameters are dependant on the anatomical location, to extract anatomically sensitive features. Extensive experiments on large-scale datasets of lung CT scans show that our method improves the performance of many downstream prediction and segmentation tasks. The patient-level representation improves the performance of the patient survival prediction task. We show how our method can detect emphysema subtypes via dense prediction. We demonstrate that fine-tuning the pre-trained model can significantly reduce annotation efforts without sacrificing emphysema detection accuracy. Our ablation study highlights the importance of incorporating anatomical context into the SSL framework. Our codes are available at https://github.com/batmanlab/DrasCLR.


Assuntos
Enfisema , Humanos , Tórax , Tomografia Computadorizada por Raios X , Aprendizado de Máquina Supervisionado
3.
Proc Int Conf Mach Learn ; 202: 11360-11397, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37711878

RESUMO

ML model design either starts with an interpretable model or a Blackbox and explains it post hoc. Blackbox models are flexible but difficult to explain, while interpretable models are inherently explainable. Yet, interpretable models require extensive ML knowledge and tend to be less flexible and underperforming than their Blackbox variants. This paper aims to blur the distinction between a post hoc explanation of a Blackbox and constructing interpretable models. Beginning with a Blackbox, we iteratively carve out a mixture of interpretable experts (MoIE) and a residual network. Each interpretable model specializes in a subset of samples and explains them using First Order Logic (FOL), providing basic reasoning on concepts from the Blackbox. We route the remaining samples through a flexible residual. We repeat the method on the residual network until all the interpretable models explain the desired proportion of data. Our extensive experiments show that our route, interpret, and repeat approach (1) identifies a diverse set of instance-specific concepts with high concept completeness via MoIE without compromising in performance, (2) identifies the relatively "harder" samples to explain via residuals, (3) outperforms the interpretable by-design models by significant margins during test-time interventions, and (4) fixes the shortcut learned by the original Blackbox. The code for MoIE is publicly available at: https://github.com/batmanlab/ICML-2023-Route-interpret-repeat.

4.
IEEE Winter Conf Appl Comput Vis ; 2023: 4709-4719, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724183

RESUMO

A highly accurate but overconfident model is ill-suited for deployment in critical applications such as healthcare and autonomous driving. The classification outcome should reflect a high uncertainty on ambiguous in-distribution samples that lie close to the decision boundary. The model should also refrain from making overconfident decisions on samples that lie far outside its training distribution, far-out-of-distribution (far-OOD), or on unseen samples from novel classes that lie near its training distribution (near-OOD). This paper proposes an application of counterfactual explanations in fixing an over-confident classifier. Specifically, we propose to fine-tune a given pre-trained classifier using augmentations from a counterfactual explainer (ACE) to fix its uncertainty characteristics while retaining its predictive performance. We perform extensive experiments with detecting far-OOD, near-OOD, and ambiguous samples. Our empirical results show that the revised model have improved uncertainty measures, and its performance is competitive to the state-of-the-art methods.

5.
Chronic Obstr Pulm Dis ; 10(4): 355-368, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37413999

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by pathologic changes in the airways, lung parenchyma, and persistent inflammation, but the links between lung structural changes and blood transcriptome patterns have not been fully described. Objections: The objective of this study was to identify novel relationships between lung structural changes measured by chest computed tomography (CT) and blood transcriptome patterns measured by blood RNA sequencing (RNA-seq). Methods: CT scan images and blood RNA-seq gene expression from 1223 participants in the COPD Genetic Epidemiology (COPDGene®) study were jointly analyzed using deep learning to identify shared aspects of inflammation and lung structural changes that we labeled image-expression axes (IEAs). We related IEAs to COPD-related measurements and prospective health outcomes through regression and Cox proportional hazards models and tested them for biological pathway enrichment. Results: We identified 2 distinct IEAs: IEAemph which captures an emphysema-predominant process with a strong positive correlation to CT emphysema and a negative correlation to forced expiratory volume in 1 second and body mass index (BMI); and IEAairway which captures an airway-predominant process with a positive correlation to BMI and airway wall thickness and a negative correlation to emphysema. Pathway enrichment analysis identified 29 and 13 pathways significantly associated with IEAemph and IEAairway, respectively (adjusted p<0.001). Conclusions: Integration of CT scans and blood RNA-seq data identified 2 IEAs that capture distinct inflammatory processes associated with emphysema and airway-predominant COPD.

6.
Neuroimage Clin ; 39: 103472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506457

RESUMO

Studying small effects or subtle neuroanatomical variation requires large-scale sample size data. As a result, combining neuroimaging data from multiple datasets is necessary. Variation in acquisition protocols, magnetic field strength, scanner build, and many other non-biologically related factors can introduce undesirable bias into studies. Hence, harmonization is required to remove the bias-inducing factors from the data. ComBat is one of the most common methods applied to features from structural images. ComBat models the data using a hierarchical Bayesian model and uses the empirical Bayes approach to infer the distribution of the unknown factors. The empirical Bayes harmonization method is computationally efficient and provides valid point estimates. However, it tends to underestimate uncertainty. This paper investigates a new approach, fully Bayesian ComBat, where Monte Carlo sampling is used for statistical inference. When comparing fully Bayesian and empirical Bayesian ComBat, we found Empirical Bayesian ComBat more effectively removed scanner strength information and was much more computationally efficient. Conversely, fully Bayesian ComBat better preserved biological disease and age-related information while performing more accurate harmonization on traveling subjects. The fully Bayesian approach generates a rich posterior distribution, which is useful for generating simulated imaging features for improving classifier performance in a limited data setting. We show the generative capacity of our model for augmenting and improving the detection of patients with Alzheimer's disease. Posterior distributions for harmonized imaging measures can also be used for brain-wide uncertainty comparison and more principled downstream statistical analysis.Code for our new fully Bayesian ComBat extension is available at https://github.com/batmanlab/BayesComBat.


Assuntos
Encéfalo , Neuroimagem , Humanos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Projetos de Pesquisa
7.
Med Image Anal ; 84: 102721, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36571975

RESUMO

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.


Assuntos
Benchmarking , Radiologia , Humanos , Semântica
8.
Med Image Anal ; 83: 102628, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283200

RESUMO

Domain Adaptation (DA) has recently been of strong interest in the medical imaging community. While a large variety of DA techniques have been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality Domain Adaptation. The goal of the challenge is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are commonly performed using contrast-enhanced T1 (ceT1) MR imaging. However, there is growing interest in using non-contrast imaging sequences such as high-resolution T2 (hrT2) imaging. For this reason, we established an unsupervised cross-modality segmentation benchmark. The training dataset provides annotated ceT1 scans (N=105) and unpaired non-annotated hrT2 scans (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 scans as provided in the testing set (N=137). This problem is particularly challenging given the large intensity distribution gap across the modalities and the small volume of the structures. A total of 55 teams from 16 countries submitted predictions to the validation leaderboard. Among them, 16 teams from 9 different countries submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice score - VS: 88.4%; Cochleas: 85.7%) and close to full supervision (median Dice score - VS: 92.5%; Cochleas: 87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.


Assuntos
Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagem
9.
Artigo em Inglês | MEDLINE | ID: mdl-38645403

RESUMO

Deep Neural Networks (DNNs) are prone to learning spurious features that correlate with the label during training but are irrelevant to the learning problem. This hurts model generalization and poses problems when deploying them in safety-critical applications. This paper aims to better understand the effects of spurious features through the lens of the learning dynamics of the internal neurons during the training process. We make the following observations: (1) While previous works highlight the harmful effects of spurious features on the generalization ability of DNNs, we emphasize that not all spurious features are harmful. Spurious features can be "benign" or "harmful" depending on whether they are "harder" or "easier" to learn than the core features for a given model. This definition is model and dataset dependent. (2) We build upon this premise and use instance difficulty methods (like Prediction Depth (Baldock et al., 2021)) to quantify "easiness" for a given model and to identify this behavior during the training phase. (3) We empirically show that the harmful spurious features can be detected by observing the learning dynamics of the DNN's early layers. In other words, easy features learned by the initial layers of a DNN early during the training can (potentially) hurt model generalization. We verify our claims on medical and vision datasets, both simulated and real, and justify the empirical success of our hypothesis by showing the theoretical connections between Prediction Depth and information-theoretic concepts like 𝒱-usable information (Ethayarajh et al., 2021). Lastly, our experiments show that monitoring only accuracy during training (as is common in machine learning pipelines) is insufficient to detect spurious features. We, therefore, highlight the need for monitoring early training dynamics using suitable instance difficulty metrics.

10.
Oral Oncol ; 134: 106109, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126604

RESUMO

INTRODUCTION: Oral epithelial dysplasia (OED) is a precursor lesion to oral squamous cell carcinoma, a disease with a reported overall survival rate of 56 percent across all stages. Accurate detection of OED is critical as progression to oral cancer can be impeded with complete excision of premalignant lesions. However, previous research has demonstrated that the task of grading of OED, even when performed by highly trained experts, is subject to high rates of reader variability and misdiagnosis. Thus, our study aims to develop a convolutional neural network (CNN) model that can identify regions suspicious for OED whole-slide pathology images. METHODS: During model development, we optimized key training hyperparameters including loss function on 112 pathologist annotated cases between the training and validation sets. Then, we compared OED segmentation and classification metrics between two well-established CNN architectures for medical imaging, DeepLabv3+ and UNet++. To further assess generalizability, we assessed case-level performance of a held-out test set of 44 whole-slide images. RESULTS: DeepLabv3+ outperformed UNet++ in overall accuracy, precision, and segmentation metrics in a 4-fold cross validation study. When applied to the held-out test set, our best performing DeepLabv3+ model achieved an overall accuracy and F1-Score of 93.3 percent and 90.9 percent, respectively. CONCLUSION: The present study trained and implemented a CNN-based deep learning model for identification and segmentation of oral epithelial dysplasia (OED) with reasonable success. Computer assisted detection was shown to be feasible in detecting premalignant/precancerous oral lesions, laying groundwork for eventual clinical implementation.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Lesões Pré-Cancerosas , Carcinoma de Células Escamosas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/patologia , Redes Neurais de Computação , Lesões Pré-Cancerosas/diagnóstico
11.
Proc AAAI Conf Artif Intell ; 36(7): 8132-8140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092768

RESUMO

Knowledge distillation has been used to capture the knowledge of a teacher model and distill it into a student model with some desirable characteristics such as being smaller, more efficient, or more generalizable. In this paper, we propose a framework for distilling the knowledge of a powerful discriminative model such as a neural network into commonly used graphical models known to be more interpretable (e.g., topic models, autoregressive Hidden Markov Models). Posterior of latent variables in these graphical models (e.g., topic proportions in topic models) is often used as feature representation for predictive tasks. However, these posterior-derived features are known to have poor predictive performance compared to the features learned via purely discriminative approaches. Our framework constrains variational inference for posterior variables in graphical models with a similarity preserving constraint. This constraint distills the knowledge of the discriminative model into the graphical model by ensuring that input pairs with (dis)similar representation in the teacher model also have (dis)similar representation in the student model. By adding this constraint to the variational inference scheme, we guide the graphical model to be a reasonable density model for the data while having predictive features which are as close as possible to those of a discriminative model. To make our framework applicable to a wide range of graphical models, we build upon the Automatic Differentiation Variational Inference (ADVI), a black-box inference framework for graphical models. We demonstrate the effectiveness of our framework on two real-world tasks of disease subtyping and disease trajectory modeling.

12.
IEEE J Biomed Health Inform ; 26(8): 3966-3975, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35522642

RESUMO

Generative Adversarial Networks (GAN) have many potential medical imaging applications, including data augmentation, domain adaptation, and model explanation. Due to the limited memory of Graphical Processing Units (GPUs), most current 3D GAN models are trained on low-resolution medical images, these models either cannot scale to high-resolution or are prone to patchy artifacts. In this work, we propose a novel end-to-end GAN architecture that can generate high-resolution 3D images. We achieve this goal by using different configurations between training and inference. During training, we adopt a hierarchical structure that simultaneously generates a low-resolution version of the image and a randomly selected sub-volume of the high-resolution image. The hierarchical design has two advantages: First, the memory demand for training on high-resolution images is amortized among sub-volumes. Furthermore, anchoring the high-resolution sub-volumes to a single low-resolution image ensures anatomical consistency between sub-volumes. During inference, our model can directly generate full high-resolution images. We also incorporate an encoder with a similar hierarchical structure into the model to extract features from the images. Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation. We also demonstrate clinical applications of the proposed model in data augmentation and clinical-relevant feature extraction.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X
13.
Radiol Artif Intell ; 3(6): e200274, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34870213

RESUMO

PURPOSE: To reconstruct virtual MR elastography (MRE) images based on traditional MRI inputs with a machine learning algorithm. MATERIALS AND METHODS: In this single-institution, retrospective study, 149 patients (mean age, 58 years ± 12 [standard deviation]; 71 men) with nonalcoholic fatty liver disease who underwent MRI and MRE between January 2016 and January 2019 were evaluated. Nine conventional MRI sequences and clinical data were used to train a convolutional neural network to reconstruct MRE images at the per-voxel level. The architecture was further modified to accept multichannel three-dimensional inputs and to allow inclusion of clinical and demographic information. Liver stiffness and fibrosis category (F0 [no fibrosis] to F4 [significant fibrosis]) of reconstructed images were assessed by using voxel- and patient-level agreement by correlation, sensitivity, and specificity calculations; in addition, classification by receiver operator characteristic analyses was performed, and Dice score was used to evaluate hepatic stiffness locality. RESULTS: The model for predicting liver stiffness incorporated four image sequences (precontrast T1-weighted liver acquisition with volume acquisition [LAVA] water and LAVA fat, 120-second-delay T1-weighted LAVA water, and single-shot fast spin-echo T2 weighted) and clinical data. The model had a patient-level and voxel-level correlation of 0.50 ± 0.05 and 0.34 ± 0.03, respectively. By using a stiffness threshold of 3.54 kPa to make a binary classification into no fibrosis or mild fibrosis (F0-F1) versus clinically significant fibrosis (F2-F4), the model had sensitivity of 80% ± 4, specificity of 75% ± 5, accuracy of 78% ± 3, area under the receiver operating characteristic curve of 84 ± 0.04, and a Dice score of 0.74. CONCLUSION: The generation of virtual elastography images is feasible by using conventional MRI and clinical data with a machine learning algorithm.Keywords: MR Imaging, Abdomen/GI, Liver, Cirrhosis, Computer Applications/Virtual Imaging, Experimental Investigations, Feature Detection, Classification, Reconstruction Algorithms, Supervised Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2021.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34766173

RESUMO

Vessel segmentation is an essential task in many clinical applications. Although supervised methods have achieved state-of-art performance, acquiring expert annotation is laborious and mostly limited for two-dimensional datasets with a small sample size. On the contrary, unsupervised methods rely on handcrafted features to detect tube-like structures such as vessels. However, those methods require complex pipelines involving several hyper-parameters and design choices rendering the procedure sensitive, dataset-specific, and not generalizable. We propose a self-supervised method with a limited number of hyper-parameters that is generalizable across modalities. Our method uses tube-like structure properties, such as connectivity, profile consistency, and bifurcation, to introduce inductive bias into a learning algorithm. To model those properties, we generate a vector field that we refer to as a flow. Our experiments on various public datasets in 2D and 3D show that our method performs better than unsupervised methods while learning useful transferable features from unlabeled data. Unlike generic self-supervised methods, the learned features learn vessel-relevant features that are transferable for supervised approaches, which is essential when the number of annotated data is limited.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34766174

RESUMO

Model explainability is essential for the creation of trustworthy Machine Learning models in healthcare. An ideal explanation resembles the decision-making process of a domain expert and is expressed using concepts or terminology that is meaningful to the clinicians. To provide such explanation, we first associate the hidden units of the classifier to clinically relevant concepts. We take advantage of radiology reports accompanying the chest X-ray images to define concepts. We discover sparse associations between concepts and hidden units using a linear sparse logistic regression. To ensure that the identified units truly influence the classifier's outcome, we adopt tools from Causal Inference literature and, more specifically, mediation analysis through counterfactual interventions. Finally, we construct a low-depth decision tree to translate all the discovered concepts into a straightforward decision rule, expressed to the radiologist. We evaluated our approach on a large chest x-ray dataset, where our model produces a global explanation consistent with clinical knowledge.

16.
Proc AAAI Conf Artif Intell ; 35(6): 4874-4882, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34650825

RESUMO

Supervised learning method requires a large volume of annotated datasets. Collecting such datasets is time-consuming and expensive. Until now, very few annotated COVID-19 imaging datasets are available. Although self-supervised learning enables us to bootstrap the training by exploiting unlabeled data, the generic self-supervised methods for natural images do not sufficiently incorporate the context. For medical images, a desirable method should be sensitive enough to detect deviation from normal-appearing tissue of each anatomical region; here, anatomy is the context. We introduce a novel approach with two levels of self-supervised representation learning objectives: one on the regional anatomical level and another on the patient-level. We use graph neural networks to incorporate the relationship between different anatomical regions. The structure of the graph is informed by anatomical correspondences between each patient and an anatomical atlas. In addition, the graph representation has the advantage of handling any arbitrarily sized image in full resolution. Experiments on large-scale Computer Tomography (CT) datasets of lung images show that our approach compares favorably to baseline methods that do not account for the context. We use the learnt embedding to quantify the clinical progression of COVID-19 and show that our method generalizes well to COVID-19 patients from different hospitals. Qualitative results suggest that our model can identify clinically relevant regions in the images.

17.
Proc Mach Learn Res ; 149: 478-505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35098143

RESUMO

Probabilistic topic models, have been widely deployed for various applications such as learning disease or tissue subtypes. Yet, learning the parameters of such models is usually an ill-posed problem and may result in losing valuable information about disease severity. A common approach is to add a discriminative loss term to the generative model's loss in order to learn a representation that is also predictive of disease severity. However, finding a balance between these two losses is not straightforward. We propose an alternative way in this paper. We develop a framework which allows for incorporating external covariates into the generative model's approximate posterior. These covariates can have more discriminative power for disease severity compared to the representation that we extract from the posterior distribution. For instance, they can be features extracted from a neural network which predicts disease severity from CT images. Effectively, we enforce the generative model's approximate posterior to reside in the subspace of these discriminative covariates. We illustrate our method's application on a large-scale lung CT study of Chronic Obstructive Pulmonary Disease (COPD), a highly heterogeneous disease. We aim at identifying tissue subtypes by using a variant of topic model as a generative model. We quantitatively evaluate the predictive performance of the inferred subtypes and demonstrate that our method outperforms or performs on par with some reasonable baselines. We also show that some of the discovered subtypes are correlated with genetic measurements, suggesting that the identified subtypes may characterize the disease's underlying etiology.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35198261

RESUMO

Extracting hidden phenotypes is essential in medical data analysis because it facilitates disease subtyping, diagnosis, and understanding of disease etiology. Since the hidden phenotype is usually a low-dimensional representation that comprehensively describes the disease, we require a dimensionality-reduction method that captures as much disease-relevant information as possible. However, most unsupervised or self-supervised methods cannot achieve the goal because they learn a holistic representation containing both disease-relevant and disease-irrelevant information. Supervised methods can capture information that is predictive to the target clinical variable only, but the learned representation is usually not generalizable for the various aspects of the disease. Hence, we develop a dimensionality-reduction approach to extract Disease Relevant Features (DRFs) based on information theory. We propose to use clinical variables that weakly define the disease as so-called anchors. We derive a formulation that makes the DRF predictive of the anchors while forcing the remaining representation to be irrelevant to the anchors via adversarial regularization. We apply our method to a large-scale study of Chronic Obstructive Pulmonary Disease (COPD). Our experiment shows: (1) Learned DRFs are as predictive as the original representation in predicting the anchors, although it is in a significantly lower dimension. (2) Compared to supervised representation, the learned DRFs are more predictive to other relevant disease metrics that are not used during the training. (3) The learned DRFs are related to non-imaging biological measurements such as gene expressions, suggesting the DRFs include information related to the underlying biology of the disease.

19.
Adv Neural Inf Process Syst ; 34: 4974-4986, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35546903

RESUMO

The generalization of representations learned via contrastive learning depends crucially on what features of the data are extracted. However, we observe that the contrastive loss does not always sufficiently guide which features are extracted, a behavior that can negatively impact the performance on downstream tasks via "shortcuts", i.e., by inadvertently suppressing important predictive features. We find that feature extraction is influenced by the difficulty of the so-called instance discrimination task (i.e., the task of discriminating pairs of similar points from pairs of dissimilar ones). Although harder pairs improve the representation of some features, the improvement comes at the cost of suppressing previously well represented features. In response, we propose implicit feature modification (IFM), a method for altering positive and negative samples in order to guide contrastive models towards capturing a wider variety of predictive features. Empirically, we observe that IFM reduces feature suppression, and as a result improves performance on vision and medical imaging tasks. The code is available at: https://github.com/joshr17/IFM.

20.
Med Phys ; 48(3): 1168-1181, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33340116

RESUMO

PURPOSE: To develop and evaluate a deep learning (DL) approach to extract rich information from high-resolution computed tomography (HRCT) of patients with chronic obstructive pulmonary disease (COPD). METHODS: We develop a DL-based model to learn a compact representation of a subject, which is predictive of COPD physiologic severity and other outcomes. Our DL model learned: (a) to extract informative regional image features from HRCT; (b) to adaptively weight these features and form an aggregate patient representation; and finally, (c) to predict several COPD outcomes. The adaptive weights correspond to the regional lung contribution to the disease. We evaluate the model on 10 300 participants from the COPDGene cohort. RESULTS: Our model was strongly predictive of spirometric obstruction ( r 2  =  0.67) and grouped 65.4% of subjects correctly and 89.1% within one stage of their GOLD severity stage. Our model achieved an accuracy of 41.7% and 52.8% in stratifying the population-based on centrilobular (5-grade) and paraseptal (3-grade) emphysema severity score, respectively. For predicting future exacerbation, combining subjects' representations from our model with their past exacerbation histories achieved an accuracy of 80.8% (area under the ROC curve of 0.73). For all-cause mortality, in Cox regression analysis, we outperformed the BODE index improving the concordance metric (ours: 0.61 vs BODE: 0.56). CONCLUSIONS: Our model independently predicted spirometric obstruction, emphysema severity, exacerbation risk, and mortality from CT imaging alone. This method has potential applicability in both research and clinical practice.


Assuntos
Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Valor Preditivo dos Testes , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...