Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Fungal Genet Biol ; 152: 103570, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004340

RESUMO

Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fitocromo/genética , Fitocromo/metabolismo , Ustilago/genética , Ustilago/metabolismo , Basidiomycota , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos/genética , Luz , Fitocromo/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Ustilago/efeitos dos fármacos , Ustilago/efeitos da radiação
3.
Nucleic Acids Res ; 48(22): 12845-12857, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270891

RESUMO

Photolyases are ubiquitously occurring flavoproteins for catalyzing photo repair of UV-induced DNA damages. All photolyases described so far have a bilobal architecture with a C-terminal domain comprising flavin adenine dinucleotide (FAD) as catalytic cofactor and an N-terminal domain capable of harboring an additional antenna chromophore. Using sequence-similarity network analysis we discovered a novel subgroup of the photolyase/cryptochrome superfamily (PCSf), the NewPHLs. NewPHL occur in bacteria and have an inverted topology with an N-terminal catalytic domain and a C-terminal domain for sealing the FAD binding site from solvent access. By characterizing two NewPHL we show a photochemistry characteristic of other PCSf members as well as light-dependent repair of CPD lesions. Given their common specificity towards single-stranded DNA many bacterial species use NewPHL as a substitute for DASH-type photolyases. Given their simplified architecture and function we suggest that NewPHL are close to the evolutionary origin of the PCSf.


Assuntos
Criptocromos/genética , DNA de Cadeia Simples/genética , Desoxirribodipirimidina Fotoliase/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Domínio Catalítico/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA de Cadeia Simples/efeitos da radiação , Desoxirribodipirimidina Fotoliase/efeitos da radiação , Methylobacterium/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , Rhodobacteraceae/genética , Raios Ultravioleta
4.
Curr Biol ; 30(22): 4483-4490.e4, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32946746

RESUMO

Cryptochromes and photolyases are blue-light photoreceptors and DNA-repair enzymes, respectively, with conserved domains and a common ancestry [1-3]. Photolyases use UV-A and blue light to repair lesions in DNA caused by UV radiation, photoreactivation, although cryptochromes have specialized roles ranging from the regulation of photomorphogenesis in plants, to clock function in animals [4-7]. A group of cryptochromes (cry-DASH) [8] from bacteria, plants, and animals has been shown to repair in vitro cyclobutane pyrimidine dimers (CPDs) in single-stranded DNA (ssDNA), but not in double-stranded DNA (dsDNA) [9]. Cry-DASH are evolutionary related to 6-4 photolyases and animal cryptochromes, but their biological role has remained elusive. The analysis of several crystal structures of members of the cryptochrome and photolyase family (CPF) allowed the identification of structural and functional similarities between photolyases and cryptochromes [8, 10-12] and led to the proposal that the absence of dsDNA repair activity in cry-DASH is due to the lack of an efficient flipping of the lesion into the catalytic pocket [13]. However, in the fungus Phycomyces blakesleeanus, cry-DASH has been shown to be capable of repairing CPD lesions in dsDNA as a bona fide photolyase [14]. Here, we show that cry-DASH of a related fungus, Mucor circinelloides, not only repairs CPDs in dsDNA in vitro but is the enzyme responsible for photoreactivation in vivo. A structural model of the M. circinelloides cry-DASH suggests that the capacity to repair lesions in dsDNA is an evolutionary adaptation from an ancestor that only had the capacity to repair lesions in ssDNA.


Assuntos
Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Proteínas Fúngicas/metabolismo , Mucor/enzimologia , Dímeros de Pirimidina/metabolismo , Criptocromos/genética , DNA/genética , DNA/metabolismo , Reparo do DNA , Desoxirribodipirimidina Fotoliase/genética , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Mucor/genética , Filogenia , Dímeros de Pirimidina/genética
5.
Biol Chem ; 401(12): 1487-1493, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32663167

RESUMO

Drosophila, Arabidopsis, Synechocystis, human (DASH)-type cryptochromes (cry-DASHs) form one subclade of the cryptochrome/photolyase family (CPF). CPF members are flavoproteins that act as DNA-repair enzymes (DNA-photolyases), or as ultraviolet(UV)-A/blue light photoreceptors (cryptochromes). In mammals, cryptochromes are essential components of the circadian clock feed-back loop. Cry-DASHs are present in almost all major taxa and were initially considered as photoreceptors. Later studies demonstrated DNA-repair activity that was, however, restricted to UV-lesions in single-stranded DNA. Very recent studies, particularly on microbial organisms, substantiated photoreceptor functions of cry-DASHs suggesting that they could be transitions between photolyases and cryptochromes.


Assuntos
Arabidopsis/metabolismo , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Drosophila/metabolismo , Synechocystis/metabolismo , Animais , Humanos
6.
Planta ; 251(1): 33, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832774

RESUMO

MAIN CONCLUSION: The cryptochrome photoreceptor mutant cry2I404F exhibits hyperactivity in the dark, hypersensitivity in different light conditions, and in contrast to the wild-type protein, its flavin chromophore is reducible even in the absence of light. Plant cryptochromes (cry) are blue-light photoreceptors involved in multiple signaling pathways and various photomorphogenic responses. One biologically hyperactive mutant of a plant cryptochrome that was previously characterized is Arabidopsis cry1L407F (Exner et al. in Plant Physiol 154:1633-1645, 2010). Protein sequence alignments of different cryptochromes revealed that L407 in cry1 corresponds to I404 in cry2. Point mutation of Ile to Phe in cry2 in this position created a novel mutant. The present study provided a baseline data on the elucidation of the properties of cry2I404F. This mutant was still able to bind ATP-triggering conformational changes, as confirmed by partial tryptic digestion and thermo-FAD assays. Surprisingly, the FAD cofactor of cry2I404F was reduced by the addition of reductant even in the absence of light. In vivo, cry2I404F exhibited a cop phenotype in the dark and hypersensitivity to various light conditions compared to cry2 wild type. Overall, these data suggest that the hypersensitivity to red and blue light and hyperactivity of this novel mutant in the dark can be mostly accounted to structural alterations brought forth by the Ile to Phe mutation at position 404 that allows reduction of the flavin chromophore even in the absence of light.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Flavinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efeitos da radiação , Criptocromos/química , Criptocromos/efeitos da radiação , Luz , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Conformação Proteica , Transdução de Sinais , Fatores de Transcrição/genética
7.
Front Microbiol ; 10: 735, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024506

RESUMO

In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.

8.
Sci Rep ; 8(1): 16120, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382124

RESUMO

Breeding vegetative crops (e.g. beets, cabbage, forage grasses) is challenged by two conflicting aims. For field production, flowering must be avoided while flowering and seed set is necessary for breeding and seed production. The biennial species sugar beet makes shoot elongation ('bolting') followed by flowering after a long period of cold temperatures. Field production in northern geographical regions starts in spring. A thickened storage root is formed only during vegetative growth. It is expected that winter beets, which are sown before winter would have a much higher yield potential. However, field production was not possible so far due to bolting after winter. We propose a strategy to breed winter beets exploiting haplotype variation at two major bolting time loci, B and B2. Both genes encode transcription factors controlling the expression of two orthologs of the Arabidopsis gene FLOWERING LOCUS T (FT). We detected an epistatic interaction between both genes because F2 plants homozygous for two B/B2 mutant alleles did not bolt even after vernalization. Fluorescence complementation studies revealed that both proteins form a heterodimer in vivo. In non-bolting plants, the bolting activator BvFT2 was completely downregulated whereas the repressor BvFT1 was upregulated which suggests that both genes acquire a CONSTANS (CO) like function in beet. Like CO, B and B2 proteins house CCT and BBX domains which, in contrast to CO are split between the two beet genes. We propose an alternative regulation of FT orthologs in beet that can be exploited to breed winter beets.


Assuntos
Beta vulgaris/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Temperatura Baixa , Produtos Agrícolas , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Fatores de Tempo
9.
Plant J ; 96(2): 389-403, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044014

RESUMO

Cryptochrome (cry) blue light photoreceptors have important roles in the regulation of plant development. Their photocycle includes redox changes of their flavin adenine dinucleotide (FAD) chromophore, which is fully oxidised in the dark state and semi-reduced in the signalling-active lit state. The two Arabidopsis thaliana cryptochromes, cry1 and cry2, and the plant-type cryptochrome CPH1 from Chlamydomonas rheinhardtii bind ATP and other nucleotides. Binding of ATP affects the photocycle of these photoreceptors and causes structural alterations. However, the exact regions that undergo structural changes have not been defined, and most importantly it is not known whether ATP binding affects the biological activity of these photoreceptors in planta. Here we present studies on the effect of ATP on Arabidopsis cry2. Recombinant cry2 protein showed a high affinity for ATP (KD of 1.09 ± 0.48 µm). Binding of ATP and other adenines promoted photoreduction of the FAD chromophore in vitro and caused structural changes, particularly in α-helix 21 which links the photosensory domain with the C-terminal extension. The constructed cry2Y399A mutant was unable to bind ATP and did not show enhancement of photoreduction by ATP. When this mutant gene was expressed in Arabidopsis null cry2 mutant plants it retained some biological activity, which was, however, lower than that of the wild type. Our results indicate that binding of ATP to cry2, and most likely to other plant-type cryptochromes, is not essential but boosts the formation of the signalling state and biological activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Criptocromos/genética , Luz , Oxirredução , Proteínas Recombinantes
10.
J Biol Chem ; 292(31): 12906-12920, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28634231

RESUMO

Plant cryptochromes (cry) act as UV-A/blue light receptors. The prototype, Arabidopsis thaliana cry1, regulates several light responses during the life cycle, including de-etiolation, and is also involved in regulating flowering time. The cry1 photocycle is initiated by light absorption by its FAD chromophore, which is most likely fully oxidized (FADox) in the dark state and photoreduced to the neutral flavin semiquinone (FADH°) in its lit state. Cryptochromes lack the DNA-repair activity of the closely related DNA photolyases, but they retain the ability to bind nucleotides such as ATP. The previously characterized L407F mutant allele of Arabidopsis cry1 is biologically hyperactive and seems to mimic the ATP-bound state of cry1, but the reason for this phenotypic change is unclear. Here, we show that cry1L407F can still bind ATP, has less pronounced photoreduction and formation of FADH° than wild-type cry1, and has a dark reversion rate 1.7 times lower than that of the wild type. The hyperactivity of cry1L407F is not related to a higher FADH° occupancy of the photoreceptor but is caused by a structural alteration close to the ATP-binding site. Moreover, we show that ATP binds to cry1 in both the dark and the lit states. This binding was not affected by cry1's C-terminal extension, which is important for signal transduction. Finally, we show that a recently discovered chemical inhibitor of cry1, 3-bromo-7-nitroindazole, competes for ATP binding and thereby diminishes FADH° formation, which demonstrates that both processes are important for cry1 function.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Modelos Moleculares , Mutação , Trifosfato de Adenosina/química , Substituição de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Ligação Competitiva , Biocatálise , Criptocromos/antagonistas & inibidores , Criptocromos/química , Criptocromos/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Temperatura Alta/efeitos adversos , Indazóis/química , Indazóis/metabolismo , Indazóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
11.
Photochem Photobiol ; 93(1): 355-362, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27463507

RESUMO

Members of the cryptochrome/photolyase family (CPF) of proteins utilize noncovalently bound light-absorbing cofactors for their biological function. Usually, the identity of these cofactors is determined after expression in heterologous systems leaving the question unanswered whether these cofactors are identical to the indigenous ones. Here, cryptochrome 3 from Arabidopsis thaliana was expressed as a fusion with the green fluorescent protein in Arabidopsis plants. Besides the confirmation of the earlier report of its localization in chloroplasts, our data indicate that fractions of the fusion protein are present in the stroma and associated with thylakoids, respectively. Furthermore, it is shown that the fusion protein expressed in planta contains the same cofactors as the His6 -tagged protein expressed in Escherichia coli, that is, flavin adenine dinucleotide and N5 ,N10 -methenyltetrahydrofolate. This demonstrates that the heterologously expressed cryptochrome 3, characterized in a number of previous studies, is a valid surrogate of the corresponding protein expressed in plants. To our knowledge, this is also a first conclusive analysis of cofactors bound to an Arabidopsis protein belonging to the CPF and purified from plant tissue.


Assuntos
Arabidopsis/enzimologia , Criptocromos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Tetra-Hidrofolatos/metabolismo , Cromatografia de Fase Reversa , Criptocromos/genética , Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência
12.
Cell ; 164(1-2): 15-17, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771482

RESUMO

The light spectrum perceived by plants is affected by crowding, which results in the shade avoidance syndrome (SAS). Findings presented by Pedmale et al. bring cryptochromes to the forefront of SAS and elucidate a fascinating molecular crosstalk between photoreceptor systems operating in different wavebands.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criptocromos/metabolismo
13.
Microbiologyopen ; 5(2): 224-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26687452

RESUMO

Ustilago maydis is a phytopathogenic fungus causing corn smut disease. It also is known for its extreme tolerance to UV- and ionizing radiation. It has not been elucidated whether light-sensing proteins, and in particular photolyases play a role in its UV-tolerance. Based on homology analysis, U. maydis has 10 genes encoding putative light-responsive proteins. Four amongst these belong to the cryptochrome/photolyase family (CPF) and one represents a white collar 1 ortholog (wco1). Deletion mutants in the predicted cyclobutane pyrimidine dimer CPD- and (6-4)-photolyase were impaired in photoreactivation. In line with this, in vitro studies with recombinant CPF proteins demonstrated binding of the catalytic FAD cofactor, its photoreduction to fully reduced FADH(-) and repair activity for cyclobutane pyrimidine dimers (CPDs) or (6-4)-photoproducts, respectively. We also investigated the role of Wco1. Strikingly, transcriptional profiling showed 61 genes differentially expressed upon blue light exposure of wild-type, but only eight genes in the Δwco1 mutant. These results demonstrate that Wco1 is a functional blue light photoreceptor in U. maydis regulating expression of several genes including both photolyases. Finally, we show that the Δwco1 mutant is less tolerant against UV-B due to its incapability to induce photolyase expression.


Assuntos
Adaptação Biológica/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Raios Ultravioleta , Ustilago/fisiologia , Ustilago/efeitos da radiação , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Família Multigênica , Mutação , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
14.
Proc Natl Acad Sci U S A ; 112(49): 15130-5, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26578805

RESUMO

DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B-induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent manner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fungi.


Assuntos
Criptocromos/fisiologia , Reparo do DNA/fisiologia , Evolução Molecular , Phycomyces/metabolismo , Criptocromos/genética , Genes Fúngicos , Phycomyces/genética , Dímeros de Pirimidina
15.
Photochem Photobiol ; 91(6): 1356-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26215424

RESUMO

Proteins from the cryptochrome/photolyase family utilize UV-A, blue or even red light to achieve such diverse functions as repair of DNA lesions by photolyases and signaling by cryptochromes. DASH-type cryptochromes retained the ability to repair cyclobutane pyrimidine dimers (CPDs) in single-stranded DNA regions in vitro. However, most organisms possess conventional CPD photolyases responsible for repair of these lesions in vivo. Recent work showed that the DASH-type cryptochrome CryD plays a regulatory role in diverse light-dependent processes in Fusarium fujikuroi. Here, we report our in vitro studies on heterologously expressed FfCryD. The purified protein contains N(5) ,N(10) -methenyltetrahydrofolate and flavin adenine dinucleotide as cofactors. Photoreduction and DNA photorepair experiments confirmed that FfCryD is active in light-driven electron transfer processes. However, the protein showed comparable affinities for CPD-comprising and undamaged DNA probes. Surprisingly, after purification, full-length FfCryD as well as a truncated version containing only the PHR domain bound RNA which influenced their behavior in vitro. Moreover, binding of FfCryD to RNA indicates a putative role in RNA metabolism or in posttranscriptional control of gene expression.


Assuntos
Criptocromos/química , Fusarium/química , Luz , Proteínas de Ligação a DNA/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Transdução de Sinais
16.
Plant Cell ; 26(11): 4519-31, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25428980

RESUMO

Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways. Here, we show that Arabidopsis thaliana cry2 proteins containing Trp triad mutations indeed undergo robust photoreduction in living cultured insect cells. UV/Vis and electron paramagnetic resonance spectroscopy resolves the discrepancy between in vivo and in vitro photochemical activity, as small metabolites, including NADPH, NADH, and ATP, were found to promote cry photoreduction even in mutants lacking the classic Trp triad electron transfer chain. These metabolites facilitate alternate electron transfer pathways and increase light-induced radical pair formation. We conclude that cryptochrome activation is consistent with a mechanism of light-induced electron transfer followed by flavin photoreduction in vivo. We further conclude that in vivo modulation by cellular compounds represents a feature of the cryptochrome signaling mechanism that has important consequences for light responsivity and activation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Criptocromos/metabolismo , Flavinas/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Criptocromos/genética , Transporte de Elétrons , Insetos , Luz , Modelos Moleculares , Mutação de Sentido Incorreto , Oxirredução , Triptofano/química
17.
J Biol Chem ; 289(28): 19659-69, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24849603

RESUMO

Light-harvesting and resonance energy transfer to the catalytic FAD cofactor are key roles for the antenna chromophores of light-driven DNA photolyases, which remove UV-induced DNA lesions. So far, five chemically diverse chromophores have been described for several photolyases and related cryptochromes, but no correlation between phylogeny and used antenna has been found. Despite a common protein topology, structural analysis of the distantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plantal orthologues indicated several differences in terms of DNA and FAD binding and electron transfer pathways. For MmCPDII we identify 8-hydroxydeazaflavin (8-HDF) as cognate antenna by in vitro and in vivo reconstitution, whereas the higher plant class II photolyase from Arabidopsis thaliana fails to bind any of the known chromophores. According to the 1.9 Å structure of the MmCPDII·8-HDF complex, its antenna binding site differs from other members of the photolyase-cryptochrome superfamily by an antenna loop that changes its conformation by 12 Å upon 8-HDF binding. Additionally, so-called N- and C-motifs contribute as conserved elements to the binding of deprotonated 8-HDF and allow predicting 8-HDF binding for most of the class II photolyases in the whole phylome. The 8-HDF antenna is used throughout the viridiplantae ranging from green microalgae to bryophyta and pteridophyta, i.e. mosses and ferns, but interestingly not in higher plants. Overall, we suggest that 8-hydroxydeazaflavin is a crucial factor for the survival of most higher eukaryotes which depend on class II photolyases to struggle with the genotoxic effects of solar UV exposure.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Desoxirribodipirimidina Fotoliase/química , Flavina-Adenina Dinucleotídeo/química , Methanosarcina/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Criptocromos/química , Criptocromos/genética , Criptocromos/metabolismo , Cristalografia por Raios X , DNA Arqueal/genética , DNA Arqueal/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Methanosarcina/genética
18.
Plant J ; 74(4): 583-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23398192

RESUMO

One crucial component in light signaling is the quantity of photoreceptor present in the active signaling state. The lifetime of the signaling state of a photoreceptor is limited because of thermal or otherwise back reversion of the chromophore to the ground state, and/or degradation of the photoreceptor in the light-activated state. It was previously shown that the lit state of plant cryptochromes contains flavin-neutral semiquinone, and that the half-lives of the lit state were in the range of 3-4 min in vitro. However, it was unknown how long-lived the signaling states of plant cryptochromes are in situ. Based on the loss of degradation of cry2 after prolonged dark incubation and loss of reversibility of photoactivated cry1 by a pulse of green light, we estimate the in vivo half-lives of the signaling states of cry1 and cry2 to be in the range of 5 and 16 min, respectively. Based on electron paramagnetic resonance measurements, the lifetime of the Arabidopsis cry1 lit state in insect cells was found to be ~6 min, and thus very similar to the lifetime of the signaling state in planta. Thus, the signaling state lifetimes of plant cryptochromes are not, or are only moderately, stabilized in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Criptocromos/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Transdução de Sinal Luminoso , Luz , Animais , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Linhagem Celular , Criptocromos/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Insetos , Mutação , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Fatores de Tempo
19.
Plant Cell ; 24(6): 2610-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22739826

RESUMO

The UV-A/blue light photoreceptor crytochrome2 (cry2) plays a fundamental role in the transition from the vegetative to the reproductive phase in the facultative long-day plant Arabidopsis thaliana. The cry2 protein level strongly decreases when etiolated seedlings are exposed to blue light; cry2 is first phosphorylated, polyubiquitinated, and then degraded by the 26S proteasome. COP1 is involved in cry2 degradation, but several cop1 mutants show only reduced but not abolished cry2 degradation. SUPPRESSOR OF PHYA-105 (SPA) proteins are known to work in concert with COP1, and recently direct physical interaction between cry2 and SPA1 was demonstrated. Thus, we hypothesized that SPA proteins could also play a role in cry2 degradation. To this end, we analyzed cry2 protein levels in spa mutants. In all spa mutants analyzed, cry2 degradation under continuous blue light was alleviated in a fluence rate-dependent manner. Consistent with a role of SPA proteins in phytochrome A (phyA) signaling, a phyA mutant had enhanced cry2 levels, particularly under low fluence rate blue light. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy studies showed a robust physical interaction of cry2 with SPA1 in nuclei of living cells. Our results suggest that cry2 stability is controlled by SPA and phyA, thus providing more information on the molecular mechanisms of interaction between cryptochrome and phytochrome photoreceptors.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Criptocromos/metabolismo , Fitocromo A/metabolismo , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência/métodos , Mutação , Fitocromo A/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
PLoS One ; 6(10): e26775, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22066008

RESUMO

Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens. PhrA belongs to the class III cyclobutane pyrimidine dimer (CPD) photolyases, the sister class of plant cryptochromes, while PhrB belongs to a new class represented in at least 350 bacterial organisms. Both proteins contain flavin adenine dinucleotide (FAD) as a primary catalytic cofactor, which is photoreduceable by blue light. Spectral analysis of PhrA confirmed the presence of 5,10-methenyltetrahydrofolate (MTHF) as antenna cofactor. PhrB comprises also an additional chromophore, absorbing in the short wavelength region but its spectrum is distinct from known antenna cofactors in other photolyases. Homology modeling suggests that PhrB contains an Fe-S cluster as cofactor which was confirmed by elemental analysis and EPR spectroscopy. According to protein sequence alignments the classical tryptophan photoreduction pathway is present in PhrA but absent in PhrB. Although PhrB is clearly distinguished from other photolyases including PhrA it is, like PhrA, required for in vivo photoreactivation. Moreover, PhrA can repair UV-induced DNA lesions in vitro. Thus, A. tumefaciens contains two photolyase homologs of which PhrB represents the first member of the cryptochrome/photolyase family (CPF) that contains an iron-sulfur cluster.


Assuntos
Agrobacterium tumefaciens/enzimologia , Proteínas de Bactérias/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Agrobacterium tumefaciens/efeitos da radiação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dano ao DNA , Reparo do DNA/efeitos da radiação , Elementos de DNA Transponíveis/genética , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Oxirredução/efeitos da radiação , Filogenia , Dímeros de Pirimidina/metabolismo , Espectrofotometria Ultravioleta , Homologia Estrutural de Proteína , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...