Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(11): 3495-3508, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126083

RESUMO

Due to the high number of doses required to achieve adequate coverage in the context of COVID-19 pandemics, there is a great need for novel vaccine developments. In this field, there have been research approaches that focused on the production of SARS-CoV-2 virus-like particles. These are promising vaccine candidates as their structure is similar to that of native virions but they lack the genome, constituting a biosafe alternative. In order to produce these structures using mammal cells, it has been established that all four structural proteins must be expressed. Here we report the generation and characterization of a novel chimeric virus-like particle (VLP) that can be produced by the expression of a single novel fusion protein that contains SARS-CoV-2 spike (S) ectodomain fused to rabies glycoprotein membrane anchoring region in HEK293 cells. This protein is structurally similar to native S and can autonomously bud forming enveloped VLPs that resemble native virions both in size and in morphology, displaying S ectodomain and receptor binding domain (RBD) on their surface. As a proof of concept, we analyzed the immunogenicity of this vaccine candidate in mice and confirmed the generation of anti-S, anti-RBD, and neutralizing antibodies. KEY POINTS: • A novel fusion rabies glycoprotein containing S ectodomain was designed. • Fusion protein formed cVLPs that were morphologically similar to SARS-CoV-2 virions. • cVLPs induced anti-S, anti-RBD, and neutralizing antibodies in mice.


Assuntos
COVID-19 , Raiva , Vacinas Virais , Animais , Camundongos , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Antivirais , Células HEK293 , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética , Mamíferos
2.
Appl Microbiol Biotechnol ; 107(11): 3429-3441, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093307

RESUMO

Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.


Assuntos
COVID-19 , ISCOMs , Humanos , Camundongos , Animais , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Complexo Antígeno-Anticorpo , Pandemias/prevenção & controle , Células HEK293 , Anticorpos Antivirais , Anticorpos Neutralizantes , Adjuvantes Imunológicos , Hidróxido de Alumínio
3.
Methods Mol Biol ; 2410: 273-287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914052

RESUMO

Vaccination still represents the most efficient and inexpensive strategy in the control of hepatitis B virus (HBV) infection. However, about 10% of the population vaccinated with the current S yeast-derived vaccine fail to induce an adequate immune response. Our group has developed a new-generation hepatitis B vaccine candidate composed by the three surface proteins of the HBV. Here we describe the methods to develop and characterize a stable CHO-K1 recombinant cell line able to produce and secrete hepatitis B subviral envelope particles (HBV-SVPs) containing L and M glycoproteins in addition to S glycoprotein. In addition, Western blot and immunogold electron microscopy techniques to evaluate the size, morphology, and composition of the particles are explained. Finally, immunization protocols are described in order to study the immunogenicity of HBV-SVPs and the ability of the antibodies triggered by these particles to recognize the binding site of HBV with the hepatocyte.


Assuntos
Hepatite B , Hepatite B/prevenção & controle , Antígenos de Superfície da Hepatite B/genética , Vacinas contra Hepatite B , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Humanos , Imunização , Proteínas do Envelope Viral
4.
Antiviral Res ; 183: 104936, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979402

RESUMO

Vaccination still represents the most efficient and inexpensive strategy in the control of hepatitis B virus (HBV) infection. However, about 10% of the population vaccinated with the current yeast derived vaccine, consisting of the non-glycosylated form of the small envelope protein (S) of the HBV, fail to display an adequate immune response. Therefore, there is a need for the development of new vaccines with enhanced immunogenicity. On this regard, new generation vaccines containing L and preS2-containing HBV surface proteins in addition to S, have proven to be able to bypass the lack of response of the standard vaccine. In this work, we describe the development of stable recombinant CHO-K1 and HEK293 cell lines able to produce and secrete hepatitis B subviral envelope particles (HBV-SVPs) composed by the three surface proteins of the HBV. In turn, we demonstrated that these particles induced a specific humoral immune response in experimental animals and triggered the production of antibodies with the ability to recognize the binding site of HBV with the hepatocyte. Thus, these HBV-SVPs represent a promising candidate as a new generation vaccine in order to enhance the immunogenicity of the conventional yeast derived HBV vaccine.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Vírus da Hepatite B/genética , Imunidade Humoral , Proteínas do Envelope Viral , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Células CHO , Linhagem Celular Transformada , Cricetulus , Feminino , Células HEK293 , Vírus da Hepatite B/química , Vírus da Hepatite B/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Organismos Livres de Patógenos Específicos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...