Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 678978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276289

RESUMO

Ketamine has been in use for over 50 years as a general anesthetic, acting primarily through blockade of N-methyl-D-aspartate receptors in the brain. Recent studies have demonstrated that ketamine also acts as a potent and rapid-acting antidepressant when administered at sub-anesthetic doses. However, the precise mechanism behind this effect remains unclear. We examined the diffusion properties of ketamine in brain tissue to determine their effects in in vitro studies related to the antidepressant action of ketamine. Brain slices from adult mice were exposed to artificial cerebrospinal fluid (aCSF) containing ∼17 µM ketamine HCl for varying amounts of time. The amount of ketamine within each slice was then measured by tandem high-performance liquid chromatography - mass spectrometry to characterize the diffusion of ketamine into brain tissue over time. We successfully modeled the diffusion of ketamine into brain tissue using a mono-exponential function with a time constant of τ = 6.59 min. This curve was then compared to a one-dimensional model of diffusion yielding a diffusion coefficient of approximately 0.12 cm2⋅s-1 for ketamine diffusing into brain tissue. The brain:aCSF partition coefficient for ketamine was determined to be approximately 2.76. Our results suggest that the diffusion properties of ketamine have a significant effect on drug concentrations achieved within brain tissue during in vitro experiments. This information is vital to determine the ketamine concentration necessary for in vitro slice preparation to accurately reflect in vivo doses responsible for its antidepressant actions.

2.
J Dent Educ ; 81(9): eS45-eS52, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28864803

RESUMO

With the health care delivery system in transition, the way in which oral health care services are delivered in 2040 will inevitably change. To achieve the aims of reduced cost, improved access, and higher quality and to advance population wellness, oral health care will likely become a more integrated part of medical care. An integrated primary care system would better meet the needs of an increasingly diverse and aging U.S. population with uneven access to health care services. By 2040, trends suggest that a smaller proportion of dental hygienists will work in traditional solo dental offices; many more will practice with multidisciplinary health care teams in large-group dental and medical practices and in a variety of non-traditional community settings. This integration will require changes in how dental hygienists are educated. To shape the skill sets, clinical judgment, and knowledge of future practitioners, current dental hygiene curricula must be reexamined, redirected, and enhanced. This article examines some of the factors that are likely to shape the future of dental hygiene practice, considers the strengths and weaknesses of current curricula, and proposes educational changes to prepare dental hygienists for practice in 2040. This article was written as part of the project "Advancing Dental Education in the 21st Century."


Assuntos
Higienistas Dentários/provisão & distribuição , Higienistas Dentários/tendências , Competência Clínica , Currículo , Serviços de Saúde Bucal , Higienistas Dentários/educação , Previsões , Política de Saúde , Modelos Educacionais , Papel Profissional , Estados Unidos , Recursos Humanos
3.
J Physiol ; 591(19): 4749-64, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23818695

RESUMO

Previous work has demonstrated that activation of muscarinic acetylcholine receptors at the lizard neuromuscular junction (NMJ) induces a biphasic modulation of evoked neurotransmitter release: an initial depression followed by a delayed enhancement. The depression is mediated by the release of the endocannabinoid 2-arachidonylglycerol (2-AG) from the muscle and its binding to cannabinoid type 1 receptors on the motor nerve terminal. The work presented here suggests that the delayed enhancement of neurotransmitter release is mediated by cyclooxygenase-2 (COX-2) as it converts 2-AG to the glycerol ester of prostaglandin E2 (PGE2-G). Using immunofluorescence, COX-2 was detected in the perisynaptic Schwann cells (PSCs) surrounding the NMJ. Pretreatment with either of the selective COX-2 inhibitors, nimesulide or DuP 697, prevents the delayed increase in endplate potential (EPP) amplitude normally produced by muscarine. In keeping with its putative role as a mediator of the delayed muscarinic effect, PGE2-G enhances evoked neurotransmitter release. Specifically, PGE2-G increases the amplitude of EPPs without altering that of spontaneous miniature EPPs. As shown previously for the muscarinic effect, the enhancement of evoked neurotransmitter release by PGE2-G depends on nitric oxide (NO) as the response is abolished by application of either N(G)-nitro-l-arginine methyl ester (l-NAME), an inhibitor of NO synthesis, or carboxy-PTIO, a chelator of NO. Intriguingly, the enhancement is not prevented by AH6809, a prostaglandin receptor antagonist, but is blocked by capsazepine, a TRPV1 and TRPM8 receptor antagonist. Taken together, these results suggest that the conversion of 2-AG to PGE2-G by COX-2 underlies the muscarine-induced enhancement of neurotransmitter release at the vertebrate NMJ.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/análogos & derivados , Junção Neuromuscular/metabolismo , Óxido Nítrico/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Benzoatos/farmacologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Imidazóis/farmacologia , Lagartos , Potenciais Pós-Sinápticos em Miniatura , Muscarina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Células de Schwann/metabolismo , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Xantonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA