Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 28: 162-176, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36654800

RESUMO

First-in-class membrane stabilizer Poloxamer 188 (P188) has been shown to confer membrane protection in an extensive range of clinical conditions; however, elements of the systemic distribution and localization of P188 at the organ, tissue, and muscle fiber levels in vivo have not yet been elucidated. Here we used non-invasive fluorescence imaging to directly visualize and track the distribution and localization of P188 in vivo. The results demonstrated that the Alx647 probe did not alter the fundamental properties of P188 to protect biological membranes. Distribution kinetics in mdx mice demonstrated that Alx647 did not interface with muscle membranes and had fast clearance kinetics. In contrast, the distribution kinetics for P188-Alx647 was significantly slower, indicating a dramatic depot and retention effect of P188. Results further demonstrated the significant retention of P188-Alx647 in the skeletal muscle of mdx mice, showing a significant genotype effect with a higher fluorescence signal in the mdx muscles over BL10 mice. High-resolution optical imaging provided direct evidence of P188 surrounding the sarcolemma of skeletal and cardiac muscle cells. Taken together, these findings provide direct evidence of muscle-disease-dependent molecular homing and retention of synthetic copolymers in striated muscles thereby facilitating advanced studies of copolymer-membrane association in health and disease.

2.
J Biomater Appl ; 33(3): 422-434, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30223731

RESUMO

Carrageenan is a thermoreversible polymer of natural origin widely used in food and pharmaceutical industry that presents a glycosaminoglycan-like structure. Herein, we show that kappa-type carrageenan extracted by a semi-refined process from the red seaweed Kappaphycus alvarezii displayed both chemical and structural properties similar to a commercial carrageenan. Moreover, both extracted carrageenan hydrogel and commercial carrageenan hydrogel can serve as a scaffold for in vitro culture of human skin-derived multipotent stromal cells, demonstrating considerable potential as cell-carrier materials for cell delivery in tissue engineering. Skin-derived multipotent stromal cells cultured inside the carrageenan hydrogels showed a round shape morphology and maintained their growth and viability for at least one week in culture. Next, the effect of the extracted carrageenan hydrogel loaded with human skin-derived multipotent stromal cells was evaluated in a mouse model of full-thickness skin wound. Macroscopic and histological analyses revealed some pointed ameliorated features, such as reduced inflammatory process, faster initial recovery of wounded area, and improved extracellular matrix deposition. These results indicate that extracted carrageenan hydrogel can serve as a scaffold for in vitro growth and maintenance of human SD-MSCs, being also able to act as a delivery system of cells to wounded skin. Thus, evaluation of the properties discussed in this study contribute to a further understanding and specificities of the potential use of carrageenan hydrogel as a delivery system for several applications, further to skin wound healing.


Assuntos
Carragenina/química , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pele/citologia , Alicerces Teciduais/química , Cicatrização , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/lesões , Pele/patologia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...