Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 617, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778159

RESUMO

The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.


Assuntos
Adesão Celular , Elasticidade , Neurônios , Neurônios/fisiologia , Animais , Dimetilpolisiloxanos/química , Propriedades de Superfície , Módulo de Elasticidade , Células Cultivadas , Ratos
2.
Lab Chip ; 23(10): 2458-2468, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37092599

RESUMO

Novel microparticles have generated growing interest in diagnostics for potential sensitivity and specificity in biomolecule detection and for the possibility to be integrated in a micro-system array as a lab-on-chip. Indeed, bead-based technologies integrated in microfluidics could speed up incubation steps, reduce reagent consumption and improve accessibility of diagnostic devices to non-expert users. To limit non-specific interactions with interfering molecules and to exploit the whole particle volume for bioconjugation, hydrogel microparticles, particularly polyethylene glycol-based, have emerged as promising materials to develop high-performing biosensors since their network can be functionalized to concentrate the target and improve detection. However, the limitations in positioning, trapping and mainly fine manipulation of a precise number of particles in microfluidics have largely impaired point-of-care applications. Herein, we developed an on-chip sandwich immunoassay for the detection of human immunoglobulin G in biological fluids. The detection system is based on finely engineered cleavable PEG-based microparticles, functionalized with specific monoclonal antibodies. By changing the particle number, we demonstrated tuneable specificity and sensitivity (down to 3 pM) in serum and urine. Therefore, a controlled number of hydrogel particles have been integrated in a microfluidic device for on-chip detection (HyPoC) allowing for their precise positioning and fluid exchange for incubation, washing and target detection. HyPoC dramatically decreases incubation time from 180 minutes to one minute and reduces washing volumes from 3.5 ml to 90 µL, achieving a limit of detection of 0.07 nM (with a dynamic range of 0.07-1 nM). Thus, the developed approach represents a versatile, fast and easy point-of-care testing platform for immunoassays.


Assuntos
Técnicas Analíticas Microfluídicas , Humanos , Hidrogéis , Imunoensaio , Microfluídica , Imunoglobulina G , Dispositivos Lab-On-A-Chip
3.
Talanta ; 259: 124468, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011564

RESUMO

Low abundance, small size, and sequence similarities render microRNA (miRNAs) detection challenging, particularly in real samples, where quantifying weakly expressed miRNAs can be arduous due to interference of more abundant molecules. The standard quantitative reverse transcription polymerase chain reaction (qRT-PCR) requires multiple steps, thermal cycles, and costly enzymatic reactions that can negatively affect results. Here we present a direct, precise, enzyme-free assay based on microgels particles conjugating molecular beacons (MB) capable of optically detecting low abundant miRNAs in real samples. We validate the applicability of microgels assay using qRT-PCR as a reference technology. As a relevant case, we chose miR-103-3p, a valuable diagnostic biomarker for breast cancer, both in serum samples and MCF7 cells. As a result, microgels assay quantifies miRNA molecules at room temperature in a single step, 1 h (vs. 4 hrs for qRT-PCR) without complementary DNA synthesis, amplification, or expensive reagents. Microgels assay exhibits femtomolar sensitivity, single nucleotide specificity, and a wide linear range (102-107 fM) (wider than qRT-PCR), with low sample consumption (2 µL) and excellent linearity (R2= 0.98). To test the selectivity of the microgel assay in real samples, MCF7 cells were considered where the pool of 8 other miRNAs were further upregulated with respect to miRNA 103-3p. In such complex environments, microgels assay selectively detects the miRNA target, mainly due to MB advanced stability and specificity as well as high microgel antifouling properties. These results show the reliability of microgels assay to detect miRNAs in real samples.


Assuntos
MicroRNAs , Microgéis , Reprodutibilidade dos Testes , MicroRNAs/análise , Reação em Cadeia da Polimerase em Tempo Real
4.
J Mater Chem B ; 10(12): 1980-1990, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35229850

RESUMO

In the last decade, PEG-based hydrogels have been extensively used for the production of microparticles for biosensing applications. The biomolecule accessibility and mass transport rate represent key parameters for the realization of sensitive microparticles, therefore porous materials have been developed, mainly resorting to the use of inert porogens and copolymers with different chain lengths. However, very limited information is reported regarding the addition of cleavable crosslinkers to modulate the network porosity. In this scenario, the aim of this work is to design, synthesize and characterize hydrogel microparticles, based on the copolymerization between PEG-diacrylate and N,N'-(1,2-dihydroxyethylene)-bisacrylamide, a cleavable crosslinker that simultaneously produces pores and reactive groups for bioprobe 3D bioconjugation. The results show great accessibility of these microparticles to antibodies and their complexes, without affecting their diffusion rate. Furthermore, the presence of a well-defined number of reactive aldehydes, produced by the cleavage reaction, allows modulating biosensor sensitivity through a fine control of the conjugation degree. The antibody-conjugated microparticles can efficiently capture the analyte down to a few picograms. These novel microparticles could be used as a highly sensitive platform for biomacromolecule detection in complex fluids, exploiting the combined effects of PEG's anti-fouling properties, large network porosity and interconnections, and three-dimensional bioconjugation.


Assuntos
Técnicas Biossensoriais , Polietilenoglicóis , Materiais Biocompatíveis , Técnicas Biossensoriais/métodos , Hidrogéis , Porosidade
5.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34833752

RESUMO

Herein we describe the development of a mix-read bioassay based on a three-dimensional (3D) poly ethylene glycol-(PEG)-hydrogel microparticles for the detection of oligonucleotides in complex media. The key steps of hydrogels synthesis and molecular recognition in a 3D polymer network are elucidated. The design of the DNA probes and their density in polymer network were opportunely optimized. Furthermore, the diffusion into the polymer was tuned adjusting the polymer concentration and consequently the characteristic mesh size. Upon parameters optimization, 3D-PEG-hydrogels were synthetized in a microfluidic system and provided with fluorescent probe. Target detection occurred by double strand displacement assay associated to fluorescence depletion within the hydrogel microparticle. Proposed 3D-PEG-hydrogel microparticles were designed for miR-143-3p detection. Results showed 3D-hydrogel microparticles with working range comprise between 10-6-10-12 M, had limit of detection of 30 pM and good specificity. Moreover, due to the anti-fouling properties of PEG-hydrogel, the target detection occurred in human serum with performance comparable to that in buffer. Due to the approach versatility, such design could be easily adapted to other short oligonucleotides detection.


Assuntos
Hidrogéis , MicroRNAs , Bioensaio , Sondas de DNA , Humanos , MicroRNAs/genética , Polietilenoglicóis
6.
Gels ; 7(3)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34287281

RESUMO

The control of the three-dimensional (3D) polymer network structure is important for permselective materials when specific biomolecule detection is needed. Here we investigate conditions to obtain a tailored hydrogel network that combines both molecular filtering and molecular capture capabilities for biosensing applications. Along this line, short oligonucleotide detection in a displacement assay is set within PEGDA hydrogels synthetized by UV radical photopolymerization. To provide insights on the molecular filter capability, diffusion studies of several probes (sulforhodamine G and dextrans) with different hydrodynamic radii were carried out using NMR technique. Moreover, fluorometric analyses of hybridization of DNA oligonucleotides inside PEGDA hydrogels shed light on the mechanisms of recognition in 3D, highlighting that mesh size and crowding effect greatly impact the hybridization mechanism on a polymer network. Finally, we found the best probe density and diffusion transport conditions to allow the specific oligonucleotide capture and detection inside PEGDA hydrogels for oligonucleotide detection and the filtering out of higher molecular weight molecules.

7.
Bioconjug Chem ; 32(8): 1593-1601, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34114801

RESUMO

The development of assays for protein biomarkers in complex matrices is a demanding task that still needs implementation of new approaches. Antibodies as capture agents have been largely used in bioassays but their low stability, low-efficiency production, and cross-reactivity in multiplex approaches impairs their larger applications. Instead, synthetic peptides, even with higher stability and easily adapted amino acid sequences, still remain largely unexplored in this field. Here, we provide a proof-of-concept of a microfluidic device for direct detection of biomarker overexpression. The multichannel microfluidic polydimethylsiloxane (PDMS) device was first derivatized with PAA (poly(acrylic acid)) solution. CRP-1, VEGF-114, and ΦG6 peptides were preliminarily tested to respectively bind the biomarkers, C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-α). Each PDMS microchannel was then respectively bioconjugated with a specific peptide (CRP-1, VEGF-114, or ΦG6) to specifically capture CRP, VEGF, and TNF-α. With such microdevices, a fluorescence bioassay has been set up with sensitivity in the nanomolar range, both in buffered solution and in human serum. The proposed multiplex assay worked with a low amount of sample (25 µL) and detected biomarker overexpression (above nM concentration), representing a noninvasive and inexpensive screening platform.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Peptídeos/química , Biomarcadores/análise , Humanos , Inflamação/diagnóstico , Dispositivos Lab-On-A-Chip
8.
Mater Sci Eng C Mater Biol Appl ; 118: 111515, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255071

RESUMO

Anisotropic gold nanoparticles displaying plasmon band in the near infrared region can play a crucial role in cancer therapy particularly with techniques such as photothermal therapy (PTT) and photodynamic therapy (PDT). Herein, we report an efficient, sustainable, one pot protocol for the fabrication of an unusual gold anisotropic shape, which we have named as twisted gold nanorods. These particles, though having dimensions in the nanoscale regime comparable to those of gold nanorods, display a continuous flat plasmon band like that of 2-D gold nanowire networks, extended up to the NIR-III (SWIR) range. The proposed strategy is simple and does not require any seed mediation, heating or potential toxic templates or organic solvents. Our process is based on the slow reduction of gold salt in presence of two mild reducing agents viz. l-tyrosine (an amino acid) and trisodium citrate. We observed that when both molecules are present together in particular concentrations, they direct the growth in form of twisted gold nanorods. The mechanism of growth has been described by a Diffusion Limited Aggregation numerical scheme, where it was assumed that both l-tyrosine and the gold ions in solution undergo a stochastic Brownian motion. The predictions of the model matched with the experiments with a good accuracy, indicating that the initial hypothesis is correct. The final structure has been thoroughly characterized in terms of morphology, while SERS and cytotoxic activity have also been demonstrated.


Assuntos
Nanopartículas Metálicas , Nanotubos , Citratos , Ácido Cítrico , Ouro , Tirosina
9.
ACS Appl Mater Interfaces ; 11(19): 17147-17156, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31021070

RESUMO

In this study, a supramolecular structure with femtomolar biorecognition properties is proposed for use in analytical devices. It is obtained by an innovative interface between synthetic hydrogel polymers and molecular beacon (mb) probes. Supramolecularly structured microgels are synthetized with a core-shell architecture with specific dyes polymerized in a desired compartment. Mb probes are opportunely conjugated at the microgel interface so that their recognition mechanism is preserved and their spatial distribution is optimized to avoid crowding effects. The miR-21, a microRNA involved in various biological processes and usually used as a biomarker in early cancer diagnosis, has been selected as the target. The results demonstrate that by tuning the spatial distribution of molecular probes immobilized on the microgel and/or the amount of microgels, the assay shows scalable sensitivity reaching a limit of detection down to about 10 fM, without amplification steps and with detection time as short as 1 h. The assay results specific toward single mutated targets, and it is stable in the presence of high-interfering oligonucleotides concentrations. The miRNA target is also detected in human serum with performances similar to those observed in PBS buffer because of microgel antifouling properties without the need of any surface treatment. All tests were performed in a low sample volume (20 µL). As a result, mb-microgel represents an innovative biosensor to precisely quantify microRNAs in a direct (mix&read), scalable, and selective way. Such an approach paves the way for creating innovative biosensing interfaces with other probes, such as hairpins, aptamers, and PNA.


Assuntos
Técnicas Biossensoriais , MicroRNAs/isolamento & purificação , Sondas Moleculares/genética , Técnicas de Amplificação de Ácido Nucleico , Corantes Fluorescentes/química , Humanos , Limite de Detecção , MicroRNAs/química , MicroRNAs/genética , Sondas Moleculares/química , Polimorfismo de Nucleotídeo Único
10.
ACS Appl Mater Interfaces ; 11(4): 3753-3762, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30609355

RESUMO

Biosensors are easy-to-use and cost-effective devices that are emerging as an attractive tool, not only in settling diagnosis or in disease monitoring, but also in mass screening tests, a timely topic that impacts on daily life of the whole society. Nanotechnologies lend themselves to the development of highly sensitive devices whose realization has become a very interdisciplinary topic. Relying on the enhancement of the fluorescence signal detected at the surface of patterned gold nanoparticles, we report the behavior of an analytical device in detecting immunoglobulins in real urine samples that shows a limit of detection of approximately 8 µg/L and a linear range of 10-100 µg/L well below the detection limit of nephelometric method, which is the reference method for this analysis. These performances have been reached thanks to an effective surface functionalization technique and can be improved even more if superydrophobic features of the substrate we produce will be exploited. Since the analyte recognition is realized by antibodies the specificity is very high and, in fact, no interference has been detected by other compounds also present in the real urine samples. The device has been assessed on serum samples by comparing IgG concentrations values obtained by the biosensor with those provided by a nephelometer. In this step we found that our approach allows the analysis of the whole blood without any pretreatment; moreover, it is inherently extendable to the analysis of most biochemical markers in biological fluids.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Imunoglobulinas/urina
11.
Analyst ; 144(4): 1369-1378, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30566146

RESUMO

Human cytomegalovirus (hCMV) infection is the leading cause of birth defects in newborns and death in immunosuppressed people. Traditional techniques require time-consuming and costly analyses, and sometimes result in false positive results; thus, a rapid and accurate detection for hCMV infection is necessary. Recently, hcmv-miR-US4-5p was selected as the biomarker for cytomegalovirus diagnosis and follow-up. Herein, we propose a bioassay based on microgels endowed with optical fluorescent oligonucleotide probes for the detection of circulating endogenous hcmv-microRNAs. In particular, a double strand probe, based on the fluorescence recovery after target capture, was conjugated on microgels and the probe density was opportunely optimised. Then, the microgels were directly mixed with the sample. The fluorescence read-out was measured as a function of target concentration at a fixed number of microgels per tube. As a bead-based assay, the performances of optical detection in terms of dynamic working range and limit of detection could be finely tuned by tuning the number of microgels per tube. The limit of detection of the assay could be tuned in the range from 39.1 fM to 156 aM by changing the microgel concentration from 50 µg mL-1 to 0.5 µg mL-1, respectively. The assay results specific for the selected target were stable over a one-year time span and they were not affected by the presence of human serum. Therefore, this bioassay based on microgels might represent a flexible platform that should be able to predict, identify and follow-up several diseases by monitoring freely circulating oligonucleotides in body fluids.


Assuntos
Bioensaio/métodos , Citomegalovirus/isolamento & purificação , Corantes Fluorescentes/química , MicroRNAs/análise , Sondas de Oligonucleotídeos/química , RNA Viral/análise , Sequência de Bases , Infecções por Citomegalovirus/virologia , Géis , Humanos , Limite de Detecção , Espectrometria de Fluorescência
12.
Chem Commun (Camb) ; 54(72): 10088-10091, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30116812

RESUMO

We present a novel method for the detection of small molecules in complex fluids based on the selection of a specific peptide for target capture and its integration into an antifouling polymeric network. Such an approach can represent a universal platform for the direct and ultra-sensitive detection of small molecules in complex media.


Assuntos
Aflatoxina M1/análise , Técnicas Biossensoriais/métodos , Hidrogéis/química , Oligopeptídeos/química , Polietilenoglicóis/química , Aflatoxina M1/química , Sequência de Aminoácidos , Animais , Fluorescência , Limite de Detecção , Leite/química , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos
13.
J Mater Chem B ; 6(8): 1207-1215, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254181

RESUMO

Synthetic receptors for biomacromolecules lack the supramolecular self-assembly behavior typical of biological systems. Here we propose a new method for the preparation of protein imprinted polymers based on the specific interaction of a peptide multi-functional block with a protein target. This peptide block contains a protein-binding peptide domain, a polymerizable moiety at the C-terminus and an environment-sensitive fluorescent molecule at the N-terminus. The method relies on a preliminary step consisting of peptide/protein supramolecular assembly, followed by copolymerization with the most common acrylate monomers (acrylamide, acrylic acid and bis-acrylamide) to produce a protein imprinted hydrogel polymer. Such a peptide block can function as an active assistant recognition element to improve affinity, and guarantees its effective polymerization at the protein/cavity interface, allowing for proper placement of a dye. As a proof of concept, we chose Bovine Serum Albumin (BSA) as the protein target and built the peptide block around a BSA binding dodecapeptide, with an allyl group as the polymerizable moiety and a dansyl molecule as the responsive dye. Compared to conventional approaches these hydrogels showed higher affinity (more than 45%) and imprinted sensitivity (about twenty fold) to the target, with a great BSA selectivity with respect to ovalbumin (α = 1.25) and lysozyme (α = 6.02). Upon protein binding, computational and experimental observations showed a blue shift of the emission peak (down to 440 nm) and an increase of fluorescence emission (twofold) and average lifetime (Δτ = 4.3 ns). Such an approach generates recognition cavities with controlled chemical information and represents an a priori method for self-responsive materials. Provided a specific peptide and minimal optimization conditions are used, such a method could be easily implemented for any protein target.

14.
Gels ; 3(2)2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30920517

RESUMO

Hydrogels, and in particular microgels, are playing an increasingly important role in a diverse range of applications due to their hydrophilic, biocompatible, and highly flexible chemical characteristics. On this basis, solution-like environment, non-fouling nature, easy probe accessibility and target diffusion, effective inclusion of reporting moieties can be achieved, making them ideal substrates for bio-sensing applications. In fact, hydrogels are already successfully used in immunoassays as well as sensitive nucleic acid assays, also enabling hydrogel-based suspension arrays. In this review, we discuss key parameters of hydrogels in the form of micron-sized particles to be used in sensing applications, paying attention to the protein and oligonucleotides (i.e., miRNAs) targets as most representative kind of biomarkers.

15.
J Biomed Nanotechnol ; 13(3): 337-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29381292

RESUMO

In this work, metal-ceramic nanocomposites were obtained through short (up to 2 h) thermal treatments at relatively moderate temperatures (750­800 °C) under a reducing atmosphere, using Fe-exchanged zeolite A as the precursor. The as-obtained materials were characterized by X-ray powder diffraction analysis, N2 adsorption at ­196 °C, and highresolution transmission electron microscopy. The results of these analyses showed that the nanocomposites consisted of a dispersion of metallic Fe nanoparticles within a porous ceramic matrix, mainly based on amorphous silica and alumina. These nanocomposites were magnetically characterized, and their magnetic response was studied. Finally, the obtained metal-ceramic nanocomposite materials were used in the separation of Escherichia coli DNA from a crude cell lysate. The results of the DNA separation experiments showed that the obtained materials could perform this type of separation.


Assuntos
DNA Bacteriano/isolamento & purificação , DNA Bacteriano/efeitos da radiação , Separação Imunomagnética/métodos , Nanocompostos/química , Nanocompostos/ultraestrutura , Ultrafiltração/métodos , Zeolitas/química , DNA Bacteriano/química , Campos Magnéticos , Teste de Materiais , Ligas Metalo-Cerâmicas/química , Nanocompostos/efeitos da radiação , Nanoporos/ultraestrutura , Tamanho da Partícula , Porosidade
16.
Biomicrofluidics ; 10(6): 064114, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27990216

RESUMO

We present an in-flow ultrasensitive fluorescence detection of microRNAs (miRNAs) using spectrally encoded microgels. We researched and employed a viscoelastic fluid to achieve an optimal alignment of microgels in a straight measurement channel and applied a simple and inexpensive microfluidic layout, allowing continuous fluorescence signal acquisitions with several emission wavelengths. In particular, we chose microgels endowed with fluorescent emitting molecules designed for multiplex spectral analysis of specific miRNA types. We analysed in a quasi-real-time manner circa 80 microgel particles a minute at sample volumes down to a few microliters, achieving a miRNA detection limit of 202 fM in microfluidic flow conditions. Such performance opens up new routes for biosensing applications of particles within microfluidic devices.

17.
Colloids Surf B Biointerfaces ; 145: 21-29, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27137799

RESUMO

Polymeric microparticles represent a robustly platform for the detection of clinically relevant analytes in biological samples; they can be functionalized encapsulating a multiple types of biologics entities, enhancing their applications as a new class of colloid materials. Microfluidic offers a versatile platform for the synthesis of monodisperse and engineered microparticles. In this work, we report microfluidic synthesis of novel polymeric microparticles endowed with specific peptide due to its superior specificity for target binding in complex media. A peptide sequence was efficiently encapsulated into the polymeric network and protein binding occurred with high affinity (KD 0.1-0.4µM). Fluidic dynamics simulation was performed to optimize the production conditions for monodisperse and stable functionalized microgels. The results demonstrate the easy and fast realization, in a single step, of functionalized monodisperse microgels using droplet-microfluidic technique, and how the inclusion of the peptide within polymeric network improve both the affinity and the specificity of protein capture.


Assuntos
Microfluídica/métodos , Técnicas Analíticas Microfluídicas , Peptídeos/química , Polietilenoglicóis/química , Polímeros/química
18.
Biomaterials ; 76: 282-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26559356

RESUMO

Cells activate signalling through ligand-receptor bonds by sensing the mechanical properties of the surrounding extracellular matrix (ECM). Ligands, indeed, have to withstand the pulling force elicited by cell receptors through focal adhesions (FAs). On this basis, we developed functional ligands to be simply adsorbed on surfaces and constituted by a two-domain peptide: one derived from ECM proteins and available to receptors to offer biochemical cues, and another adsorbed on material to withstand the tension upon receptor engagement. Tuneable compliance of the anchoring domain of the peptide ligand was verified by single peptide analysis through molecular dynamics and adsorption measurements. We showed that the highest adsorbed peptides combined with integrin cell-binding motifs allow for the cell recognition and polarization with larger mature FA areas. On the contrary, the lowest adsorbed sequences did not provide mechanical resistance to the integrin pulling action, leading to more rounded cells with smaller FA areas. This evidence demonstrates that cell mechanosensory can discriminate ligands on surfaces and should be considered as a criterion in ligand design for material bioactivation.


Assuntos
Materiais Biocompatíveis , Mecanotransdução Celular , Adesão Celular , Células Cultivadas , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície
19.
ACS Appl Mater Interfaces ; 7(42): 23597-604, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26399550

RESUMO

Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail, we have investigated the effect of a Au-based nanoCone array, fabricated by means of direct nanoimprint technique over large area (mm(2)), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 × 10(5) with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e., an increase in photonics density at the apex of cones).

20.
Sci Rep ; 5: 12634, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224659

RESUMO

Protein encapsulation technologies of polymeric microspheres currently in use have been optimized to effectively protect their "protein cargo" from inactivation occurring in biological environments, preserving its bioactivity during release up to several weeks. The scenario of protein delivery would greatly benefit by strategies enabling the production of non-spherical particles. Herein we report an easy and effective stamp-based method to produce poly-lactic-glycolic-acid (PLGA) microparticles encapsulating Vascular Endothelial Growth Factor (VEGF) of different shapes. We demonstrate that PLGA microspheres can be deformed at room temperature exploiting solvent/non-solvent plasticization in order to preserve the properties of the starting microspheres. This gentle method allows the production of shaped particles that provide a prolonged release of VEGF in active form, as verified by an angiogenic assay. The retention of the biological activity of an extremely labile molecule, i.e. VEGF, lets us hypothesize that a wide variety of drug and protein encapsulated polymeric microspheres can be processed using this method.


Assuntos
Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Fator A de Crescimento do Endotélio Vascular/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia Eletrônica de Varredura , Oxazinas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Técnicas de Microbalança de Cristal de Quartzo , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...