Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Phys Med Biol ; 68(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356308

RESUMO

Objective. The Monte Carlo simulation software is a valuable tool in radiation therapy, in particular to achieve the needed accuracy in the dose evaluation for the treatment plans optimisation. The current challenge in this field is the time reduction to open the way to many clinical applications for which the computational time is an issue. In this manuscript we present an innovative GPU-accelerated Monte Carlo software for dose valuation in electron and photon based radiotherapy, developed as an update of the FRED (Fast paRticle thErapy Dose evaluator) software.Approach. The code transports particles through a 3D voxel grid, while scoring their energy deposition along their trajectory. The models of electromagnetic interactions in the energy region between 1 MeV-1 GeV available in literature have been implemented to efficiently run on GPUs, allowing to combine a fast tracking while keeping high accuracy in dose assessment. The FRED software has been bench-marked against state-of-art full MC (FLUKA, GEANT4) in the realm of two different radiotherapy applications: Intra-Operative Radio Therapy and Very High Electron Energy radiotherapy applications.Results. The single pencil beam dose-depth profiles in water as well as the dose map computed on non-homogeneous phantom agree with full-MCs at 2% level, observing a gain in processing time from 200 to 5000.Significance. Such performance allows for computing a plan with electron beams in few minutes with an accuracy of ∼%, demonstrating the FRED potential to be adopted for fast plan re-calculation in photon or electron radiotherapy applications.


Assuntos
Elétrons , Software , Método de Monte Carlo , Simulação por Computador , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Algoritmos
2.
Phys Med ; 80: 342-346, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33271390

RESUMO

In proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point. For their characteristics, secondary fragments can alter the dose distribution and lead to an increase of RBE for the same delivered physical dose. Moreover, the radiobiological impact of target fragmentation is significant mostly in the region before the Bragg peak, where generally healthy tissues are present, and immediately after Bragg peak. Considering the high biological impact of those particles, especially in the case of healthy tissues or organs at risk, the inclusion of target fragmentation processes in the dose calculation of a treatment planning system can be relevant to improve the treatment accuracy and for this reason it is one of the major tasks of the MoVe IT project. In this study, Monte Carlo simulations were employed to fully characterize the mixed radiation field generated by target fragmentation in proton therapy. The dose averaged LET has been evaluated in case of a Spread Out Bragg Peak (SOBP). Starting from LET distribution, RBE has been evaluated with two different phenomenological models. In order to characterize the mixed radiation field, the production cross section has been evaluated by means of the FLUKA code. The future development of present work is to generate a MC database of fragments fluence to be included in TPS.


Assuntos
Terapia com Prótons , Simulação por Computador , Método de Monte Carlo , Prótons , Eficiência Biológica Relativa
3.
Sci Rep ; 10(1): 20735, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244102

RESUMO

The high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback. The Dose Profiler (DP) is a detector developed within the INnovative Solution for In-beam Dosimetry in hadronthErapy (INSIDE) collaboration for the monitoring of carbon ion treatments at the CNAO facility (Centro Nazionale di Adroterapia Oncologica) exploiting the detection of charged secondary fragments that escape from the patient. The DP capability to detect inter-fractional changes is demonstrated by comparing the obtained fragment emission maps in different fractions of the treatments enrolled in the first ever clinical trial of such a monitoring system, performed at CNAO. The case of a CNAO patient that underwent a significant morphological change is presented in detail, focusing on the implications that can be drawn for the achievable inter-fractional monitoring DP sensitivity in real clinical conditions. The results have been cross-checked against a simulation study.


Assuntos
Carbono/uso terapêutico , Íons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Ensaios Clínicos como Assunto , Humanos , Radiometria/métodos
4.
Phys Med ; 64: 45-53, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31515035

RESUMO

Particle therapy is a therapy technique that exploits protons or light ions to irradiate tumor targets with high accuracy. Protons and 12C ions are already used for irradiation in clinical routine, while new ions like 4He and 16O are currently being considered. Despite the indisputable physical and biological advantages of such ion beams, the planning of charged particle therapy treatments is challenged by range uncertainties, i.e. the uncertainty on the position of the maximal dose release (Bragg Peak - BP), during the treatment. To ensure correct 'in-treatment' dose deposition, range monitoring techniques, currently missing in light ion treatment techniques, are eagerly needed. The results presented in this manuscript indicate that charged secondary particles, mainly protons, produced by an 16O beam during target irradiation can be considered as candidates for 16O beam range monitoring. Hereafter, we report on the first yield measurements of protons, deuterons and tritons produced in the interaction of an 16O beam impinging on a PMMA target, as a function of detected energy and particle production position. Charged particles were detected at 90° and 60° with respect to incoming beam direction, and homogeneous and heterogeneous PMMA targets were used to probe the sensitivity of the technique to target inhomogeneities. The reported secondary particle yields provide essential information needed to assess the accuracy and resolution achievable in clinical conditions by range monitoring techniques based on secondary charged radiation.


Assuntos
Radioterapia com Íons Pesados , Oxigênio/uso terapêutico , Polimetil Metacrilato , Incerteza
5.
Phys Med ; 65: 84-93, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31437603

RESUMO

Particle therapy (PT) can exploit heavy ions (such as He, C or O) to enhance the treatment efficacy, profiting from the increased Relative Biological Effectiveness and Oxygen Enhancement Ratio of these projectiles with respect to proton beams. To maximise the gain in tumor control probability a precise online monitoring of the dose release is needed, avoiding unnecessary large safety margins surroundings the tumor volume accounting for possible patient mispositioning or morphological changes with respect to the initial CT scan. The Dose Profiler (DP) detector, presented in this manuscript, is a scintillating fibres tracker of charged secondary particles (mainly protons) that will be operating during the treatment, allowing for an online range monitoring. Such monitoring technique is particularly promising in the context of heavy ions PT, in which the precision achievable by other techniques based on secondary photons detection is limited by the environmental background during the beam delivery. Developed and built at the SBAI department of "La Sapienza", within the INSIDE collaboration and as part of a Centro Fermi flagship project, the DP is a tracker detector specifically designed and planned for clinical applications inside a PT treatment room. The DP operation in clinical like conditions has been tested with the proton and carbon ions beams of Trento proton-therapy center and of the CNAO facility. In this contribution the detector performances are presented, in the context of the carbon ions monitoring clinical trial that is about to start at the CNAO centre.


Assuntos
Radioterapia com Íons Pesados/instrumentação , Radiometria/instrumentação , Humanos , Sistemas On-Line , Controle de Qualidade
6.
Phys Med ; 51: 71-80, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29747928

RESUMO

Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images.


Assuntos
Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento Tridimensional , Tomografia por Emissão de Pósitrons
7.
Phys Med Biol ; 63(5): 055018, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29265011

RESUMO

Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like [Formula: see text] have recently been considered as projectiles in particle therapy centres and might represent a good compromise between the linear energy transfer and the radiobiological effectiveness of [Formula: see text] ion and proton beams, allowing improved tumour control probability and minimising normal tissue complication probability. All the currently used p, [Formula: see text] and [Formula: see text] ion beams allow achieving sharp dose gradients on the boundary of the target volume, however the accurate dose delivery is sensitive to the patient positioning and to anatomical variations with respect to photon therapy. This requires beam range and/or dose release measurement during patient irradiation and therefore the development of dedicated monitoring techniques. All the proposed methods make use of the secondary radiation created by the beam interaction with the patient and, in particular, in the case of [Formula: see text] ion beams are also able to exploit the significant charged radiation component. Measurements performed to characterise the charged secondary radiation created by [Formula: see text] and [Formula: see text] particle therapy beams are reported. Charged secondary yields, energy spectra and emission profiles produced in a poly-methyl methacrylate (PMMA) target by [Formula: see text] and [Formula: see text] beams of different therapeutic energies were measured at 60° and 90° with respect to the primary beam direction. The secondary yield of protons produced along the primary beam path in a PMMA target was obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The obtained measurements are in agreement with results reported in the literature and suggests the feasibility of range monitoring based on charged secondary particle detection: the implications for particle therapy monitoring applications are also discussed.


Assuntos
Radioterapia com Íons Pesados/efeitos adversos , Hélio/efeitos adversos , Polimetil Metacrilato/efeitos da radiação , Monitoramento de Radiação/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Relação Dose-Resposta à Radiação , Humanos , Espalhamento de Radiação
8.
Phys Med Biol ; 62(18): 7482-7504, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28873069

RESUMO

Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the Bragg peak in the therapeutic energy range. A comparison with measurements taken at the CNAO treatment center shows that the lateral dose tails are reproduced within 2% in the field size factor test up to 20 cm. The tracing kernel can run on GPU hardware, achieving 10 million primary [Formula: see text] on a single card. This performance allows one to recalculate a proton treatment plan at 1% of the total particles in just a few minutes.


Assuntos
Algoritmos , Gráficos por Computador , Método de Monte Carlo , Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Prótons , Dosagem Radioterapêutica , Software
9.
Phys Med Biol ; 62(4): 1438-1455, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28114112

RESUMO

Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z > 1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.


Assuntos
Radioterapia com Íons Pesados/métodos , Fótons , Polimetil Metacrilato/efeitos da radiação , Contagem de Cintilação/métodos , Carbono/química , Carbono/uso terapêutico , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/normas , Hélio/química , Hélio/uso terapêutico , Humanos , Transferência Linear de Energia , Terapia com Prótons , Eficiência Biológica Relativa , Contagem de Cintilação/instrumentação
10.
Phys Med Biol ; 62(4): 1291-1309, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28114124

RESUMO

Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of 4He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments-protons, deuterons, and tritons-produced by 4He ion beams of 102, 125 and 145 MeV u-1 energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of 4He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.


Assuntos
Hélio/uso terapêutico , Imagens de Fantasmas , Polimetil Metacrilato/química , Monitoramento de Radiação/métodos , Software , Algoritmos , Humanos , Método de Monte Carlo , Prótons , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
11.
Phys Med Biol ; 61(1): 183-214, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26630246

RESUMO

The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.


Assuntos
Algoritmos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Eficiência Biológica Relativa
12.
Phys Med ; 30(5): 559-69, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786664

RESUMO

GOAL: Proton treatment monitoring with Positron-Emission-Tomography (PET) is based on comparing measured and Monte Carlo (MC) predicted ß(+) activity distributions. Here we present PET ß(+) activity data and MC predictions both during and after proton irradiation of homogeneous PMMA targets, where protons were extracted from a cyclotron. METHODS AND MATERIALS: PMMA phantoms were irradiated with 62 MeV protons extracted from the CATANA cyclotron. PET activity data were acquired with a 10 × 10 cm(2) planar PET system and compared with predictions from the FLUKA MC generator. We investigated which isotopes are produced and decay during irradiation, and compared them to the situation after irradiation. For various irradiation conditions we compared one-dimensional activity distributions of MC and data, focussing on Δw50%, i.e., the distance between the 50% rise and 50% fall-off position. RESULTS: The PET system is able to acquire data during and after cyclotron irradiation. For PMMA phantoms the difference between the FLUKA MC prediction and our data in Δw50% is less than 1 mm. The ratio of PET activity events during and after irradiation is about 1 in both data and FLUKA, when equal time-frames are considered. Some differences are observed in profile shape. CONCLUSION: We found a good agreement in Δw50% and in the ratio between beam-on and beam-off activity between the PET data and the FLUKA MC predictions in all irradiation conditions.


Assuntos
Ciclotrons , Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Terapia com Prótons/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Partículas beta/uso terapêutico , Imagens de Fantasmas , Polimetil Metacrilato
13.
Phys Med Biol ; 58(22): 8099-120, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24200697

RESUMO

Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 10(8) primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3­4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image-based dosimetry in nuclear medicine.


Assuntos
Imageamento Tridimensional/métodos , Método de Monte Carlo , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Ar , Osso e Ossos/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Radiometria , Água
14.
Phys Med Biol ; 58(9): 2879-99, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23571094

RESUMO

Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of (16)O and (12)C. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons-carbon ion beam) to 57% (exiting neutrons-proton beam) have been identified in production yields as well as in the energy spectra for neutrons.


Assuntos
Radioterapia com Íons Pesados/métodos , Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Nêutrons , Dosagem Radioterapêutica , Fatores de Tempo
15.
Phys Med Biol ; 58(8): 2471-90, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23514837

RESUMO

In the field of radiotherapy, Monte Carlo (MC) particle transport calculations are recognized for their superior accuracy in predicting dose and fluence distributions in patient geometries compared to analytical algorithms which are generally used for treatment planning due to their shorter execution times. In this work, a newly developed MC-based treatment planning (MCTP) tool for proton therapy is proposed to support treatment planning studies and research applications. It allows for single-field and simultaneous multiple-field optimization in realistic treatment scenarios and is based on the MC code FLUKA. Relative biological effectiveness (RBE)-weighted dose is optimized either with the common approach using a constant RBE of 1.1 or using a variable RBE according to radiobiological input tables. A validated reimplementation of the local effect model was used in this work to generate radiobiological input tables. Examples of treatment plans in water phantoms and in patient-CT geometries together with an experimental dosimetric validation of the plans are presented for clinical treatment parameters as used at the Italian National Center for Oncological Hadron Therapy. To conclude, a versatile MCTP tool for proton therapy was developed and validated for realistic patient treatment scenarios against dosimetric measurements and commercial analytical TP calculations. It is aimed to be used in future for research and to support treatment planning at state-of-the-art ion beam therapy facilities.


Assuntos
Método de Monte Carlo , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Neoplasias/radioterapia , Imagens de Fantasmas , Eficiência Biológica Relativa , Água
16.
Phys Med Biol ; 57(22): 7651-71, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23123643

RESUMO

Nuclear fragmentation measurements are necessary when using heavy-ion beams in hadrontherapy to predict the effects of the ion nuclear interactions within the human body. Moreover, they are also fundamental to validate and improve the Monte Carlo codes for their use in planning tumor treatments. Nowadays, a very limited set of carbon fragmentation cross sections are being measured, and in particular, to our knowledge, no double-differential fragmentation cross sections at intermediate energies are available in the literature. In this work, we have measured the double-differential cross sections and the angular distributions of the secondary fragments produced in the (12)C fragmentation at 62 A MeV on a thin carbon target. The experimental data have been used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before. In particular, we have compared the experimental data with the predictions of two Geant4 nuclear reaction models: the Binary Light Ions Cascade and the Quantum Molecular Dynamic. From the comparison, it has been observed that the Binary Light Ions Cascade approximates the angular distributions of the fragment production cross sections better than the Quantum Molecular Dynamic model. However, the discrepancies observed between the experimental data and the Monte Carlo simulations lead to the conclusion that the prediction capability of both models needs to be improved at intermediate energies.


Assuntos
Carbono/uso terapêutico , Radioterapia com Íons Pesados/métodos , Método de Monte Carlo , Carbono/química , Humanos
17.
Phys Med Biol ; 57(18): 5667-78, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22935644

RESUMO

Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with E(Prod)(kin) > 83 MeV and emitted at 90° with respect to the beam line is dN(P)/(dN(C)dΩ) (E(Prod)(kin) > 83 MeV, θ = 90°) = (2.69 ± 0.08(stat) ± 0.12(sys)) × 10⁻4 sr⁻¹.


Assuntos
Radioterapia com Íons Pesados , Polimetil Metacrilato , Radiometria/instrumentação
18.
Pregnancy Hypertens ; 2(3): 267, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26105371

RESUMO

INTRODUCTION: Antenatal day care units have been experienced as an alternative to inpatient care for women with pregnancy complications including hypertensive disorders. OBJECTIVES: To assess the outcomes of outpatient management in women with gestational hypertension and mild preeclampsia and compare them to inpatient management. METHODS: Perinatal records of 294 patients (OUT group) attending the obstetric outpatient clinic were reviewed and compared with records of 398 women (IN group) attending the obstetric unit of the same tertiary referral center. The patients were divided as: GH, gestational hypertension (OUT: 194; IN: 244), GH with Intrauterine Growth Restriction (OUT: 52; IN: 78) and PE, mild preeclampsia (OUT: 48; IN: 76). The groups were comparable for age, parity, body mass index and gestational age at enrollment. RESULTS: When compared with patients treated in hospital, GH OUT women showed a higher gestational age at delivery (38±1.7 vs 35.5±2.3 weeks; p<0.001), longer time to delivery (62.0±4.8 vs 31.3±5.4days; p<0.001), higher birthweight (3251±389 vs 2271±759.1g; p<0.001), and a lower admission to neonatal intensive care unit (21.3% vs 0%; p<0.001) (hospitalization rate: 25%). Similarly, Mild PE women treated as out patient showed later gestational age at delivery (37±1.2 vs 34.4±1.7weeks), longer time to delivery (55.4±6.9 vs 35.3±4.5days), higher birthweight (3168±363 vs 2196±685.17g), and a lower admission to NICU (15.6% vs 35.5%) (hospitalization rate: 55.6%), than the inpatient controls. In the gestational hypertension with IUGR no significant differences were observed between out- and in-patient management. CONCLUSION: Women attending day care units have better or comparable perinatal outcomes than inpatients. Ambulatory management at a day-care unit is an option for monitoring and following up women with mild gestational hypertension or preeclampsia remote from term. Hospitalization remains an absolute indication if worsening of preeclampsia is diagnosed.

19.
Med Phys ; 38(7): 3944-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21858991

RESUMO

PURPOSE: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. METHODS: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. FLUKA outcomes have been compared to PENELOPE v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (ETRAN, GEANT4, MCNPX) has been done. Maximum percentage differences within 0.8.RCSDA and 0.9.RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8.X90 and 0.9.X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9.RCSDA and 0.9.X90 for electrons and isotopes, respectively. RESULTS: Concerning monoenergetic electrons, within 0.8.RCSDA (where 90%-97% of the particle energy is deposed), FLUKA and PENELOPE agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between FLUKA and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9.X90, FLUKA and PENELOPE differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of FLUKA DPKS are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution. CONCLUSIONS: FLUKA provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry.


Assuntos
Método de Monte Carlo , Neoplasias/fisiopatologia , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Algoritmos , Animais , Simulação por Computador , Elétrons , Humanos , Modelos Biológicos , Dosagem Radioterapêutica , Resultado do Tratamento
20.
Radiat Prot Dosimetry ; 122(1-4): 362-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17151013

RESUMO

Human exposure to space radiation implies two kinds of risk, both stochastic and deterministic. Shielding optimisation therefore represents a crucial goal for long-term missions, especially in deep space. In this context, the use of radiation transport codes coupled with anthropomorphic phantoms allows to simulate typical radiation exposures for astronauts behind different shielding, and to calculate doses to different organs. In this work, the FLUKA Monte Carlo code and two phantoms, a mathematical model and a voxel model, were used, taking the Galactic Cosmic Rays (GCR) spectra from the model of Badhwar and O'Neill. The time integral spectral proton fluence of the August 1972 Solar Particle Event (SPE) was represented by an exponential function. For each aluminium shield thickness, besides total doses the contributions from primary and secondary particles for different organs and tissues were calculated separately. More specifically, organ-averaged absorbed doses, dose equivalents and a form of 'biological dose', defined on the basis of initial (clustered) DNA damage, were calculated. As expected, the SPE doses dramatically decreased with increasing shielding, and doses in internal organs were lower than in skin. The contribution of secondary particles to SPE doses was almost negligible; however it is of note that, at high shielding (10 g cm(-2)), most of the secondaries are neutrons. GCR organ doses remained roughly constant with increasing Al shielding. In contrast to SPE results, for the case of cosmic rays, secondary particles accounted for a significant fraction of the total dose.


Assuntos
Radiação Cósmica/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Modelos Biológicos , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Proteção Radiológica/métodos , Astronautas , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Doses de Radiação , Proteção Radiológica/instrumentação , Radiação Ionizante , Medição de Risco/métodos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...