Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 19(6)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36384035

RESUMO

Objective. The limited functionality of hand prostheses remains one of the main reasons behind the lack of its wide adoption by amputees. Indeed, while commercial prostheses can perform a reasonable number of grasps, they are often inadequate for manipulating the object once in hand. This lack of dexterity drastically restricts the utility of prosthetic hands. We aim at investigating a novel shared control strategy that combines autonomous control of forces exerted by a robotic hand with electromyographic (EMG) decoding to perform robust in-hand object manipulation.Approach. We conduct a three-day long longitudinal study with eight healthy subjects controlling a 16-degrees-of-freedom robotic hand to insert objects in boxes of various orientations. EMG decoding from forearm muscles enables subjects to move, proportionally and simultaneously, the fingers of the robotic hand. The desired object rotation is inferred using two EMG electrodes placed on the shoulder that record the activity of muscles responsible for elevation and depression. During the object interaction phase, the autonomous controller stabilizes and rotates the object to achieve the desired pose. In this study, we compare an incremental and a proportional shoulder-decoding method in combination with two state machine interfaces offering different levels of assistance.Main results. Results indicate that robotic assistance reduces the number of failures by41%and, when combined with an incremental shoulder EMG decoding, leads to faster task completion time (median = 16.9 s), compared to other control conditions. Training to use the assistive device is fast. After one session of practice, all subjects managed to achieve tasks with50%less failures.Significance. Shared control approaches that give some authority to an autonomous controller on-board the prosthesis are an alternative to control schemes relying on EMG decoding alone. This may improve the dexterity and versatility of robotic prosthetic hands for people with trans-radial amputation. By delegating control of forces to the prosthesis' on-board control, one speeds up reaction time and improves the precision of force control. Such a shared control mechanism may enable amputees to perform fine insertion tasks solely using their prosthetic hands. This may restore some of the functionality of the disabled arm.


Assuntos
Amputados , Membros Artificiais , Robótica , Humanos , Estudos Longitudinais , Eletromiografia/métodos , Mãos/fisiologia , Força da Mão/fisiologia
2.
Commun Biol ; 4(1): 1406, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916587

RESUMO

Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an intuitive means to control such assistive robotic manipulators. However, BCI performance may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It, hence, cannot be used safely for controlling tasks where errors may be detrimental to the user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the user the choice of the robot behavior to do so a matter of personal preference as some users may be more daring while others more careful. We enable the users to train the robot controller to adapt its way to approach obstacles relying on BCI that detects error-related potentials (ErrP), indicative of the user's error expectation of the robot's current strategy to meet their preferences. Gaussian process-based inverse reinforcement learning, in combination with the ErrP-BCI, infers the user's preference and updates the obstacle avoidance controller so as to generate personalized robot trajectories. We validate the approach in experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and avoids real-life objects. Results show that the algorithm can learn user's preference and adapt the robot behavior rapidly using less than five demonstrations not necessarily optimal.


Assuntos
Aprendizagem , Reforço Psicológico , Robótica/métodos , Adulto , Humanos , Masculino
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1471-1480, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32386160

RESUMO

We propose a novel controller for powered prosthetic arms, where fused EMG and gaze data predict the desired end-point for a full arm prosthesis, which could drive the forward motion of individual joints. We recorded EMG, gaze, and motion-tracking during pick-and-place trials with 7 able-bodied subjects. Subjects positioned an object above a random target on a virtual interface, each completing around 600 trials. On average across all trials and subjects gaze preceded EMG and followed a repeatable pattern that allowed for prediction. A computer vision algorithm was used to extract the initial and target fixations and estimate the target position in 2D space. Two SVRs were trained with EMG data to predict the x- and y- position of the hand; results showed that the y-estimate was significantly better than the x-estimate. The EMG and gaze predictions were fused using a Kalman Filter-based approach, and the positional error from using EMG-only was significantly higher than the fusion of EMG and gaze. The final target position Root Mean Squared Error (RMSE) decreased from 9.28 cm with an EMG-only prediction to 6.94 cm when using a gaze-EMG fusion. This error also increased significantly when removing some or all arm muscle signals. However, using fused EMG and gaze, there were no significant difference between predictors that included all muscles, or only a subset of muscles.


Assuntos
Membros Artificiais , Algoritmos , Braço , Eletromiografia , Mãos , Humanos
4.
J Neuroeng Rehabil ; 15(1): 57, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29940991

RESUMO

BACKGROUND: Active upper-limb prostheses are used to restore important hand functionalities, such as grasping. In conventional approaches, a pattern recognition system is trained over a number of static grasping gestures. However, training a classifier in a static position results in lower classification accuracy when performing dynamic motions, such as reach-to-grasp. We propose an electromyography-based learning approach that decodes the grasping intention during the reaching motion, leading to a faster and more natural response of the prosthesis. METHODS AND RESULTS: Eight able-bodied subjects and four individuals with transradial amputation gave informed consent and participated in our study. All the subjects performed reach-to-grasp motions for five grasp types, while the elecromyographic (EMG) activity and the extension of the arm were recorded. We separated the reach-to-grasp motion into three phases, with respect to the extension of the arm. A multivariate analysis of variance (MANOVA) on the muscular activity revealed significant differences among the motion phases. Additionally, we examined the classification performance on these phases. We compared the performance of three different pattern recognition methods; Linear Discriminant Analysis (LDA), Support Vector Machines (SVM) with linear and non-linear kernels, and an Echo State Network (ESN) approach. Our off-line analysis shows that it is possible to have high classification performance above 80% before the end of the motion when with three-grasp types. An on-line evaluation with an upper-limb prosthesis shows that the inclusion of the reaching motion in the training of the classifier importantly improves classification accuracy and enables the detection of grasp intention early in the reaching motion. CONCLUSIONS: This method offers a more natural and intuitive control of prosthetic devices, as it will enable controlling grasp closure in synergy with the reaching motion. This work contributes to the decrease of delays between the user's intention and the device response and improves the coordination of the device with the motion of the arm.


Assuntos
Membros Artificiais , Eletromiografia/métodos , Força da Mão/fisiologia , Intenção , Reconhecimento Automatizado de Padrão/métodos , Adulto , Análise Discriminante , Feminino , Mãos/fisiologia , Humanos , Masculino , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA