Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257962

RESUMO

We report on Moonbase, an innovative pipeline that builds upon the established tools of MetaPhlAn and Kraken2, enhancing their capabilities for more precise taxonomic detection and quantification in diverse microbial communities. Moonbase enhances the performance of Kraken2 mapping by providing an efficient method for constructing project-specific databases. Moonbase was evaluated using synthetic metagenomic samples and compared against MetaPhlAn3 and generalized Kraken2 databases. Moonbase significantly improved species precision and quantification, outperforming marker genes and generalized databases. Construction of a phylogenetic tree from 16S genome data in Moonbase allowed for the incorporation of UniFrac-type phylogenetic information into diversity calculations of samples. We demonstrated that the resulting analysis increased statistical power in distinguishing microbial communities. This study highlights the continual evolution of metagenomic tools with the goal of improving metagenomic analysis and highlighting the potential of the Moonbase pipeline.

3.
Sci Rep ; 13(1): 9061, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37271782

RESUMO

The vaginal microbiota refers to the microorganisms that reside in the vagina. These microorganisms contribute significantly to a woman's reproductive and general health. A healthy vaginal microbiota is typically a low-diversity environment with a predominance of lactic acid-producing Lactobacillus species. Factors such as antibiotic use, sexual activity, and hormonal changes can disrupt the balance of the vaginal microbiota, leading to conditions such as bacterial vaginosis. The composition of the vaginal microbiota changes and takes on added importance during pregnancy, serving as a barrier against infection for both mother and fetus. Despite the importance of the microorganisms that colonize the vagina, details of how changes in composition and diversity can impact pregnancy outcomes is poorly understood. This is especially true for woman with a high prevalence of Gardnerella vaginalis. Here we report on a diverse cohort of 749 women, enrolled in the InSPIRe cohort, during their final trimester of pregnancy. We show that Lactobacilli, including L. crispatus are important in maintaining low diversity, and that depletion in this critical community is linked with preterm delivery. We further demonstrate that it is overall diversity of the vaginal microbiota, not specific species, which provides the best indicator of risk.


Assuntos
Microbiota , Vaginose Bacteriana , Gravidez , Recém-Nascido , Feminino , Humanos , Resultado da Gravidez , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Gardnerella vaginalis , Lactobacillus
4.
Genes (Basel) ; 11(3)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245073

RESUMO

Although there are a number of bioinformatic tools to identify plant nucleotide-binding leucine-rich repeat (NLR) disease resistance genes based on conserved protein sequences, only a few of these tools have attempted to identify disease resistance genes that have not been annotated in the genome. The overall goal of the NLGenomeSweeper pipeline is to annotate NLR disease resistance genes, including RPW8, in the genome assembly with high specificity and a focus on complete functional genes. This is based on the identification of the complete NB-ARC domain, the most conserved domain of NLR genes, using the BLAST suite. In this way, the tool has a high specificity for complete genes and relatively intact pseudogenes. The tool returns all candidate NLR gene locations as well as InterProScan ORF and domain annotations for manual curation of the gene structure.


Assuntos
Genômica/métodos , Proteínas NLR/genética , Proteínas de Plantas/genética , Análise de Sequência de Proteína/métodos , Software/normas , Arabidopsis , Sequência Conservada , Resistência à Doença , Genômica/normas , Helianthus , Proteínas NLR/química , Proteínas de Plantas/química , Ligação Proteica , Domínios Proteicos , Análise de Sequência de Proteína/normas
5.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543809

RESUMO

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Pesquisa/educação , Humanos , Projetos de Pesquisa , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...