Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(14): 142501, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862664

RESUMO

We present the measurement of the two-neutrino double-ß decay rate of ^{76}Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg yr, the half-life of the process has been determined: T_{1/2}^{2ν}=(2.022±0.018_{stat}±0.038_{syst})×10^{21} yr. This is the most precise determination of the ^{76}Ge two-neutrino double-ß decay half-life and one of the most precise measurements of a double-ß decay process. The relevant nuclear matrix element can be extracted: M_{eff}^{2ν}=(0.101±0.001).

2.
Eur Phys J C Part Fields ; 83(9): 778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674593

RESUMO

We search for tri-nucleon decays of 76Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to 73Cu, 73Zn, and 73Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of 73Ga to 73Ge (stable). We search for the 73Ga decay exploiting the fact that it dominantly populates the 66.7 keV 73mGa state with half-life of 0.5 s. The nnn-decays of 76Ge that proceed via 73mGe are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2×1026 yr  (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude.

3.
Phys Rev Lett ; 131(4): 041003, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566859

RESUMO

We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03) ton yr exposure used for this search, the intrinsic ^{85}Kr and ^{222}Rn concentrations in the liquid target are reduced to unprecedentedly low levels, giving an electronic recoil background rate of (15.8±1.3) events/ton yr keV in the region of interest. A blind analysis of nuclear recoil events with energies between 3.3 and 60.5 keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of 2.58×10^{-47} cm^{2} for a WIMP mass of 28 GeV/c^{2} at 90% confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure.

4.
Eur Phys J C Part Fields ; 83(8): 717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576939

RESUMO

The DARWIN observatory is a proposed next-generation experiment with 40 tonnes of liquid xenon as an active target in a time projection chamber. To study challenges related to the construction and operation of a multi-tonne scale detector, we have designed and constructed a vertical, full-scale demonstrator for the DARWIN experiment at the University of Zurich. Here, we present the first results from a several-months run with 343kg of xenon and electron drift lifetime and transport measurements with a 53cm tall purity monitor immersed in the cryogenic liquid. After 88days of continuous purification, the electron lifetime reached a value of (664±23)µs. We measured the drift velocity of electrons for electric fields in the range (25-75) V/cm, and found values consistent with previous measurements. We also calculated the longitudinal diffusion constant of the electron cloud in the same field range, and compared with previous data, as well as with predictions from an empirical model.

5.
Phys Rev Lett ; 130(26): 261002, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450817

RESUMO

Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This Letter places strong constraints on spin-independent interactions of dark matter particles with a mass between 1×10^{12} and 2×10^{17} GeV/c^{2}. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross sections for dark matter particles with masses close to the Planck scale.

6.
Eur Phys J C Part Fields ; 83(4): 319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122826

RESUMO

The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition.

7.
Phys Rev Lett ; 129(16): 161805, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306777

RESUMO

We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3) events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.

9.
Eur Phys J C Part Fields ; 82(7): 599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821975

RESUMO

The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222 Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background ( ∼ 17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222 Rn activity concentration in XENONnT is determined to be 4.2 ( - 0.7 + 0.5 )  µ Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.

10.
Eur Phys J C Part Fields ; 82(4): 284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464994

RESUMO

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular 228 Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around Q ß ß = 2039  keV, while preserving ( 81 ± 3 ) % of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis.

11.
Eur Phys J C Part Fields ; 81(4): 337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720714

RESUMO

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the 222 Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a 222 Rn activity concentration of 10 µ Bq / kg in 3.2 t of xenon. The knowledge of the distribution of the 222 Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the 222 Rn activity concentration in XENON1T. The final 222 Rn activity concentration of ( 4.5 ± 0.1 ) µ Bq / kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.

12.
Eur Phys J C Part Fields ; 81(6): 505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720720

RESUMO

Neutrinoless double- ß decay of 76 Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76 Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double- ß decay of 76 Ge ( Q ß ß  = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg · year, the background index after analysis cuts is measured to be 4 . 9 - 3.4 + 7.3 × 10 - 4 counts / ( keV · kg · year ) around Q ß ß . This work confirms the feasibility of IC detectors for the next-generation experiment Legend.

13.
Eur Phys J C Part Fields ; 81(8): 682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776783

RESUMO

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q ß ß = 2039.061 ( 7 )  keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- ß decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular 228 Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.

14.
Phys Rev Lett ; 126(9): 091301, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750173

RESUMO

We report on a search for nuclear recoil signals from solar ^{8}B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant ^{8}B neutrinolike excess is found in an exposure of 0.6 t×y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c^{-2} by as much as an order of magnitude.

15.
Phys Rev Lett ; 125(1): 011801, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678643

RESUMO

We present the first search for bosonic superweakly interacting massive particles (super-WIMPs) as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-ß decay experiment which operates high-purity germanium detectors enriched in ^{76}Ge in an ultralow background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c^{2} to 1 MeV/c^{2}. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c^{2} have been set. As an example, at a mass of 150 keV/c^{2} the most stringent direct limits on the dimensionless couplings of axionlike particles and dark photons to electrons of g_{ae}<3×10^{-12} and α^{'}/α<6.5×10^{-24} at 90% credible interval, respectively, were obtained.

16.
Eur Phys J C Part Fields ; 80(5): 477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508522

RESUMO

For the first time, a small dual-phase (liquid/gas) xenon time projection chamber was equipped with a top array of silicon photomultipliers for light and charge readout. Here we describe the instrument in detail, as well as the data processing and the event position reconstruction algorithms. We obtain a spatial resolution of ∼ 1.5 mm in the horizontal plane. To characterise the detector performance, we show calibration data with internal 83 m Kr and 37 Ar sources, and we detail the production of the latter as well as its introduction into the system. We finally compare the observed light and charge yields down to electronic recoil energies of 2.82 keV to predictions based on NEST v2.0.

17.
Phys Rev Lett ; 125(25): 252502, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416389

RESUMO

The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-ß (0νßß) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νßß decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26} yr at 90% C.L., which coincides with the sensitivity assuming no signal.

18.
Eur Phys J C Part Fields ; 79(11): 978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885491

RESUMO

The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.

19.
Science ; 365(6460): 1445-1448, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31488705

RESUMO

A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-ß (0νßß) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νßß decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T 1/2 > 0.9 × 1026 years (90% C.L.). Our T 1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νßß decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.

20.
Phys Rev Lett ; 122(14): 141301, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050482

RESUMO

We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3×10^{-42} cm^{2} at 30 GeV/c^{2} and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...