Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39143982

RESUMO

Summary: Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation: Not applicable.

2.
Adv Biol (Weinh) ; : e2400134, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123285

RESUMO

Premature Aging (PA) diseases are rare genetic disorders that mimic some aspects of physiological aging at an early age. Various causative genes of PA diseases have been identified in recent years, providing insights into some dysfunctional cellular processes. However, the identification of PA genes also revealed significant genetic heterogeneity and highlighted the gaps in this understanding of PA-associated molecular mechanisms. Furthermore, many patients remain undiagnosed. Overall, the current lack of knowledge about PA diseases hinders the development of effective diagnosis and therapies and poses significant challenges to improving patient care. Here, a network-based approach to systematically unravel the cellular functions disrupted in PA diseases is presented. Leveraging a network community identification algorithm, it is delved into a vast multilayer network of biological interactions to extract the communities of 67 PA diseases from their 132 associated genes. It is found that these communities can be grouped into six distinct clusters, each reflecting specific cellular functions: DNA repair, cell cycle, transcription regulation, inflammation, cell communication, and vesicle-mediated transport. That these clusters collectively represent the landscape of the molecular mechanisms that are perturbed in PA diseases, providing a framework for better understanding their pathogenesis is proposed. Intriguingly, most clusters also exhibited a significant enrichment in genes associated with physiological aging, suggesting a potential overlap between the molecular underpinnings of PA diseases and natural aging.

3.
Sci Rep ; 14(1): 11225, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755190

RESUMO

Muscular dystrophies (MDs) are inherited genetic diseases causing weakness and degeneration of muscles. The distribution of muscle weakness differs between MDs, involving distal muscles or proximal muscles. While the mutations in most of the MD-associated genes lead to either distal or proximal onset, there are also genes whose mutations can cause both types of onsets. We hypothesized that the genes associated with different MD onsets code proteins with distinct cellular functions. To investigate this, we collected the MD-associated genes and assigned them to three onset groups: genes mutated only in distal onset dystrophies, genes mutated only in proximal onset dystrophies, and genes mutated in both types of onsets. We then systematically evaluated the cellular functions of these gene sets with computational strategies based on functional enrichment analysis and biological network analysis. Our analyses demonstrate that genes mutated in either distal or proximal onset MDs code proteins linked with two distinct sets of cellular processes. Interestingly, these two sets of cellular processes are relevant for the genes that are associated with both onsets. Moreover, the genes associated with both onsets display high centrality and connectivity in the network of muscular dystrophy genes. Our findings support the hypothesis that the proteins associated with distal or proximal onsets have distinct functional characteristics, whereas the proteins associated with both onsets are multifunctional.


Assuntos
Debilidade Muscular , Distrofias Musculares , Mutação , Humanos , Distrofias Musculares/genética , Debilidade Muscular/genética , Redes Reguladoras de Genes , Biologia Computacional/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Músculo Esquelético/patologia
4.
BMC Bioinformatics ; 25(1): 70, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355439

RESUMO

BACKGROUND: Biological networks have proven invaluable ability for representing biological knowledge. Multilayer networks, which gather different types of nodes and edges in multiplex, heterogeneous and bipartite networks, provide a natural way to integrate diverse and multi-scale data sources into a common framework. Recently, we developed MultiXrank, a Random Walk with Restart algorithm able to explore such multilayer networks. MultiXrank outputs scores reflecting the proximity between an initial set of seed node(s) and all the other nodes in the multilayer network. We illustrate here the versatility of bioinformatics tasks that can be performed using MultiXrank. RESULTS: We first show that MultiXrank can be used to prioritise genes and drugs of interest by exploring multilayer networks containing interactions between genes, drugs, and diseases. In a second study, we illustrate how MultiXrank scores can also be used in a supervised strategy to train a binary classifier to predict gene-disease associations. The classifier performance are validated using outdated and novel gene-disease association for training and evaluation, respectively. Finally, we show that MultiXrank scores can be used to compute diffusion profiles and use them as disease signatures. We computed the diffusion profiles of more than 100 immune diseases using a multilayer network that includes cell-type specific genomic information. The clustering of the immune disease diffusion profiles reveals shared shared phenotypic characteristics. CONCLUSION: Overall, we illustrate here diverse applications of MultiXrank to showcase its versatility. We expect that this can lead to further and broader bioinformatics applications.


Assuntos
Algoritmos , Biologia Computacional , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA