Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460898

RESUMO

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo , Infarto do Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Vasodilatação , Animais , Camundongos
3.
Circ Res ; 128(3): 363-382, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301355

RESUMO

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Assuntos
Barreira Hematoencefálica/metabolismo , Artérias Cerebrais/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório/metabolismo , AVC Isquêmico/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Ataque Isquêmico Transitório/prevenção & controle , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/prevenção & controle , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/genética , Grau de Desobstrução Vascular
4.
Kidney Int ; 98(5): 1193-1209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32569653

RESUMO

The endothelin system may be an important player in hypertensive end-organ injury as endothelin-1 increases blood pressure and is pro-inflammatory. The immune system is emerging as an important regulator of blood pressure and we have shown that the early hypertensive response to angiotensin-II infusion was amplified in mice deficient of myeloid endothelin-B (ETB) receptors (LysM-CreEdnrblox/lox). Hypothesizing that these mice would display enhanced organ injury, we gave angiotensin-II to LysM-CreEdnrblox/lox and littermate controls (Ednrblox/lox) for six weeks. Unexpectedly, LysM-CreEdnrblox/lox mice were significantly protected from organ injury, with less proteinuria, glomerulosclerosis and inflammation of the kidney compared to controls. In the eye, LysM-CreEdnrblox/lox mice had fewer retinal hemorrhages, less microglial activation and less vessel rarefaction. Cardiac remodeling and dysfunction were similar in both groups at week six but LysM-CreEdnrblox/lox mice had better endothelial function. Although blood pressure was initially higher in LysM-CreEdnrblox/lox mice, this was not sustained. A natriuretic switch at about two weeks, due to enhanced ETB signaling in the kidney, induced a hypertensive reversal. By week six, blood pressure was lower in LysM-CreEdnrblox/lox mice than in controls. At six weeks, macrophages from LysM-CreEdnrblox/lox mice were more anti-inflammatory and had greater phagocytic ability compared to the macrophages of Ednrblox/lox mice. Thus, myeloid cell ETB receptor signaling drives this injury both through amplifying hypertension and by inflammatory polarization of macrophages.


Assuntos
Angiotensina II , Hipertensão , Animais , Pressão Sanguínea , Endotelinas , Hipertensão/induzido quimicamente , Hipertensão/genética , Rim , Camundongos , Receptor de Endotelina B/genética
5.
Blood Adv ; 3(11): 1702-1713, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31171507

RESUMO

The bioactive lipid mediator sphingosine 1-phosphate (S1P) was recently assigned critical roles in platelet biology: whereas S1P1 receptor-mediated S1P gradient sensing was reported to be essential for directing proplatelet extensions from megakaryocytes (MKs) toward bone marrow sinusoids, MK sphingosine kinase 2 (Sphk2)-derived S1P was reported to further promote platelet shedding through receptor-independent intracellular actions, and platelet aggregation through S1P1 Yet clinical use of S1P pathway modulators including fingolimod has not been associated with risk of bleeding or thrombosis. We therefore revisited the role of S1P in platelet biology in mice. Surprisingly, no reduction in platelet counts was observed when the vascular S1P gradient was ablated by impairing S1P provision to plasma or S1P degradation in interstitial fluids, nor when gradient sensing was impaired by S1pr1 deletion selectively in MKs. Moreover, S1P1 expression and signaling were both undetectable in mature MKs in situ, and MK S1pr1 deletion did not affect platelet aggregation or spreading. When S1pr1 deletion was induced in hematopoietic progenitor cells, platelet counts were instead significantly elevated. Isolated global Sphk2 deficiency was associated with thrombocytopenia, but this was not replicated by MK-restricted Sphk2 deletion and was reversed by compound deletion of either Sphk1 or S1pr2, suggesting that this phenotype arises from increased S1P export and S1P2 activation secondary to redistribution of sphingosine to Sphk1. Consistent with clinical observations, we thus observe no essential role for S1P1 in facilitating platelet production or activation. Instead, S1P restricts megakaryopoiesis through S1P1, and can further suppress thrombopoiesis through S1P2 when aberrantly secreted in the hematopoietic niche.


Assuntos
Plaquetas/metabolismo , Lisofosfolipídeos/metabolismo , Megacariócitos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Nicho de Células-Tronco , Trombopoese , Animais , Plaquetas/citologia , Lisofosfolipídeos/genética , Megacariócitos/citologia , Camundongos , Camundongos Knockout , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo
6.
Eur Heart J ; 40(9): 768-784, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657897

RESUMO

AIMS: Hypertension is common. Recent data suggest that macrophages (Mφ) contribute to, and protect from, hypertension. Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor with additional pro-inflammatory properties. We investigated the role of the ET system in experimental and clinical hypertension by modifying Mφ number and phenotype. METHODS AND RESULTS: In vitro, Mφ ET receptor function was explored using pharmacological, gene silencing, and knockout approaches. Using the CD11b-DTR mouse and novel mice with myeloid cell-specific endothelin-B (ETB) receptor deficiency (LysMETB-/-), we explored the effects of modifying Mφ number and phenotype on the hypertensive effects of ET-1, angiotensin II (ANG II), a model that is ET-1 dependent, and salt. In patients with small vessel vasculitis, the impacts of Mφ depleting and non-depleting therapies on blood pressure (BP) and endothelial function were examined. Mouse and human Mφ expressed both endothelin-A and ETB receptors and displayed chemokinesis to ET-1. However, stimulation of Mφ with exogenous ET-1 did not polarize Mφ phenotype. Interestingly, both mouse and human Mφ cleared ET-1 through ETB receptor mediated, and dynamin-dependent, endocytosis. Mφ depletion resulted in an augmented chronic hypertensive response to both ET-1 and salt. LysMETB-/- mice displayed an exaggerated hypertensive response to both ET-1 and ANG II. Finally, in patients who received Mφ depleting immunotherapy BP was higher and endothelial function worse than in those receiving non-depleting therapies. CONCLUSION: Mφ and ET-1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension.


Assuntos
Angiotensina II/fisiologia , Endotelina-1/fisiologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Macrófagos/fisiologia , Receptor de Endotelina B/fisiologia , Animais , Modelos Animais de Doenças , Endocitose/fisiologia , Humanos , Hipertensão/etiologia , Camundongos , Receptor de Endotelina A
7.
Ultraschall Med ; 40(6): 734-742, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30241104

RESUMO

OBJECTIVE: Vascular Ehlers-Danlos syndrome (vEDS) is associated with arterial ruptures due to a mutant gene encoding collagen type III (Col-III). To better understand the role of Col-III, we aimed at evaluating aortic stiffness and dynamic stiffening in vEDS mouse models, with either a quantitative (col3KO mice) or a qualitative Col-III defect (col3KI mice). MATERIALS AND METHODS: Abdominal aortic wall pulse wave velocities (PWV) in col3KO and col3KI mice were compared to their respective wild type (WT) littermates using a 15 MHz ultrafast ultrasonic transducer. A carotid catheter continuously monitored pressure changes due to phenylephrine injections. PWV1, generated at diastolic blood pressure (DBP), and PWV2, at systolic blood pressure (SBP) were recorded. Difference between PWV2 and PWV1 (Delta-PWV) normalized by the pulse pressure (PP), corresponding to the aortic stiffening over the cardiac cycle, were compared between mutant and WT mice, as well as the regression slope of PWV as a function of pressure. RESULTS: Delta-PWV/PP was lower in col3KO (p = 0.033) and col3KI mice (p < 0.001) vs. WT-mice regardless of the pressure level. The slope of PWV1 with DBP increase showed a lower arterial stiffness in mutant mice vs. controls in both models. This difference was amplified when evaluating stiffness at systolic blood pressure levels with PWV2. CONCLUSION: In both vEDS mouse models, aortic stiffening was reduced, mainly driven by a lower stiffness at systolic blood pressure. Defective Col-III may be responsible for this, as it is utilized when pressure rises. These pre-clinical data could explain vascular fragility observed in vEDS patients.


Assuntos
Síndrome de Ehlers-Danlos , Hipertensão , Rigidez Vascular , Animais , Pressão Sanguínea , Síndrome de Ehlers-Danlos/diagnóstico por imagem , Humanos , Camundongos , Fenótipo , Análise de Onda de Pulso , Ultrassonografia
8.
Kidney Int ; 94(3): 514-523, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30146013

RESUMO

Pseudohypoaldosteronism type II (PHAII) is a genetic disease characterized by association of hyperkalemia, hyperchloremic metabolic acidosis, hypertension, low renin, and high sensitivity to thiazide diuretics. It is caused by mutations in the WNK1, WNK4, KLHL3 or CUL3 gene. There is strong evidence that excessive sodium chloride reabsorption by the sodium chloride cotransporter NCC in the distal convoluted tubule is involved. WNK4 is expressed not only in distal convoluted tubule cells but also in ß-intercalated cells of the cortical collecting duct. These latter cells exchange intracellular bicarbonate for external chloride through pendrin, and therefore, account for renal base excretion. However, these cells can also mediate thiazide-sensitive sodium chloride absorption when the pendrin-dependent apical chloride influx is coupled to apical sodium influx by the sodium-driven chloride/bicarbonate exchanger. Here we determine whether this system is involved in the pathogenesis of PHAII. Renal pendrin activity was markedly increased in a mouse model carrying a WNK4 missense mutation (Q562E) previously identified in patients with PHAII. The upregulation of pendrin led to an increase in thiazide-sensitive sodium chloride absorption by the cortical collecting duct, and it caused metabolic acidosis. The function of apical potassium channels was altered in this model, and hyperkalemia was fully corrected by pendrin genetic ablation. Thus, we demonstrate an important contribution of pendrin in renal regulation of sodium chloride, potassium and acid-base homeostasis and in the pathophysiology of PHAII. Furthermore, we identify renal distal bicarbonate secretion as a novel mechanism of renal tubular acidosis.


Assuntos
Acidose Tubular Renal/fisiopatologia , Túbulos Renais Coletores/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/complicações , Transportadores de Sulfato/metabolismo , Acidose Tubular Renal/sangue , Acidose Tubular Renal/etiologia , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Potássio/sangue , Potássio/metabolismo , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Eliminação Renal , Cloreto de Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Transportadores de Sulfato/genética , Regulação para Cima
9.
Sci Rep ; 8(1): 3249, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459793

RESUMO

Mutations of the gene encoding WNK1 [With No lysine (K) kinase 1] or WNK4 cause Familial Hyperkalemic Hypertension (FHHt). Previous studies have shown that the activation of SPAK (Ste20-related Proline/Alanine-rich Kinase) plays a dominant role in the development of FHHt caused by WNK4 mutations. The implication of SPAK in FHHt caused by WNK1 mutation has never been investigated. To clarify this issue, we crossed WNK1+/FHHt mice with SPAK knock-in mice in which the T-loop Thr243 residue was mutated to alanine to prevent activation by WNK kinases. We show that WNK1+/FHHT:SPAK 243A/243A mice display an intermediate phenotype, between that of control and SPAK 243A/243A mice, with normal blood pressure but hypochloremic metabolic alkalosis. NCC abundance and phosphorylation levels also decrease below the wild-type level in the double-mutant mice but remain higher than in SPAK 243A/243A mice. This is different from what was observed in WNK4-FHHt mice in which SPAK inactivation completely restored the phenotype and NCC expression to wild-type levels. Although these results confirm that FHHt caused by WNK1 mutations is dependent on the activation of SPAK, they suggest that WNK1 and WNK4 play different roles in the distal nephron.


Assuntos
Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/fisiopatologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética
10.
J Am Soc Nephrol ; 28(12): 3563-3578, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28928136

RESUMO

FSGS, the most common primary glomerular disorder causing ESRD, is a complex disease that is only partially understood. Progressive sclerosis is a hallmark of FSGS, and genetic tracing studies have shown that parietal epithelial cells participate in the formation of sclerotic lesions. The loss of podocytes triggers a focal activation of parietal epithelial cells, which subsequently form cellular adhesions with the capillary tuft. However, in the absence of intrinsic podocyte alterations, the origin of the pathogenic signal that triggers parietal epithelial cell recruitment remains elusive. In this study, investigation of the role of the endothelial PAS domain-containing protein 1 (EPAS1), a regulatory α subunit of the hypoxia-inducible factor complex, during angiotensin II-induced hypertensive nephropathy provided novel insights into FSGS pathogenesis in the absence of a primary podocyte abnormality. We infused angiotensin II into endothelial-selective Epas1 knockout mice and their littermate controls. Although the groups presented with identical high BP, endothelial-specific Epas1 gene deletion accentuated albuminuria with severe podocyte lesions and recruitment of pathogenic parietal glomerular epithelial cells. These lesions and dysfunction of the glomerular filtration barrier were associated with FSGS in endothelial Epas1-deficient mice only. These results indicate that endothelial EPAS1 has a global protective role during glomerular hypertensive injuries without influencing the hypertensive effect of angiotensin II. Furthermore, these findings provide proof of principle that endothelial-derived signaling can trigger FSGS and illustrate the potential importance of the EPAS1 endothelial transcription factor in secondary FSGS.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Epiteliais/citologia , Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/metabolismo , Hipertensão/metabolismo , Glomérulos Renais/metabolismo , Albuminas/análise , Angiotensina II/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pressão Sanguínea , Diferenciação Celular , Cruzamentos Genéticos , Progressão da Doença , Células Epiteliais/metabolismo , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Podócitos/metabolismo , Telemetria
11.
Nephrol Dial Transplant ; 32(7): 1137-1145, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28064162

RESUMO

BACKGROUND: Pendrin, the chloride/bicarbonate exchanger of ß-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. METHODS: Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. RESULTS: We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. CONCLUSION: By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Pressão Sanguínea/fisiologia , Hipertensão/etiologia , Animais , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Transportadores de Sulfato
12.
Circ Res ; 119(8): e110-26, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27582371

RESUMO

RATIONALE: Sphingosine-1-phosphate (S1P) signaling is essential for vascular development and postnatal vascular homeostasis. The relative importance of S1P sources sustaining these processes remains unclear. OBJECTIVE: To address the level of redundancy in bioactive S1P provision to the developing and mature vasculature. METHODS AND RESULTS: S1P production was selectively impaired in mouse platelets, erythrocytes, endothelium, or smooth muscle cells by targeted deletion of genes encoding sphingosine kinases -1 and -2. S1P deficiency impaired aggregation and spreading of washed platelets and profoundly reduced their capacity to promote endothelial barrier function ex vivo. However, and in contrast to recent reports, neither platelets nor any other source of S1P was essential for vascular development, vascular integrity, or hemostasis/thrombosis. Yet rapid and profound depletion of plasma S1P during systemic anaphylaxis rendered both platelet- and erythrocyte-derived S1P essential for survival, with a contribution from blood endothelium observed only in the absence of circulating sources. Recovery was sensitive to aspirin in mice with but not without platelet S1P, suggesting that platelet activation and stimulus-response coupling is needed. S1P deficiency aggravated vasoplegia in this model, arguing a vital role for S1P in maintaining vascular resistance during recovery from circulatory shock. Accordingly, the S1P2 receptor mediated most of the survival benefit of S1P, whereas the endothelial S1P1 receptor was dispensable for survival despite its importance for maintaining vascular integrity. CONCLUSIONS: Although source redundancy normally secures essential S1P signaling in developing and mature blood vessels, profound depletion of plasma S1P renders both erythrocyte and platelet S1P pools necessary for recovery and high basal plasma S1P levels protective during anaphylactic shock.


Assuntos
Anafilaxia/metabolismo , Plaquetas/metabolismo , Endotélio Vascular/metabolismo , Eritrócitos/metabolismo , Homeostase/fisiologia , Lisofosfolipídeos/deficiência , Esfingosina/análogos & derivados , Anafilaxia/patologia , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esfingosina/deficiência
13.
J Am Soc Nephrol ; 27(11): 3320-3330, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27044666

RESUMO

ATPase H+-transporting lysosomal accessory protein 2 (Atp6ap2), also known as the (pro)renin receptor, is a type 1 transmembrane protein and an accessory subunit of the vacuolar H+-ATPase (V-ATPase) that may also function within the renin-angiotensin system. However, the contribution of Atp6ap2 to renin-angiotensin-dependent functions remains unconfirmed. Using mice with an inducible conditional deletion of Atp6ap2 in mouse renal epithelial cells, we found that decreased V-ATPase expression and activity in the intercalated cells of the collecting duct impaired acid-base regulation by the kidney. In addition, these mice suffered from marked polyuria resistant to desmopressin administration. Immunoblotting revealed downregulation of the medullary Na+-K+-2Cl- cotransporter NKCC2 in these mice compared with wild-type mice, an effect accompanied by a hypotonic medullary interstitium and impaired countercurrent multiplication. This phenotype correlated with strong autophagic defects in epithelial cells of medullary tubules. Notably, cells with high accumulation of the autophagosomal substrate p62 displayed the strongest reduction of NKCC2 expression. Finally, nephron-specific Atp6ap2 depletion did not affect angiotensin II production, angiotensin II-dependent BP regulation, or sodium handling in the kidney. Taken together, our results show that nephron-specific deletion of Atp6ap2 does not affect the renin-angiotensin system but causes a combination of renal concentration defects and distal renal tubular acidosis as a result of impaired V-ATPase activity.


Assuntos
Rim/enzimologia , ATPases Translocadoras de Prótons/fisiologia , Receptores de Superfície Celular/fisiologia , Sistema Renina-Angiotensina/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Feminino , Masculino , Camundongos
14.
Pflugers Arch ; 468(7): 1151-1160, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27023351

RESUMO

Human mutations in the X-linked FLNA gene are associated with a remarkably diverse phenotype, including severe arterial morphological anomalies. However, the role for filamin A (FlnA) in vascular cells remains partially understood. We used a smooth muscle (sm)-specific conditional mouse model to delete FlnA at the adult stage, thus avoiding the developmental effects of the knock-out. Inactivation of smFlnA in adult mice significantly lowered blood pressure, together with a decrease in pulse pressure. However, both the aorta and carotid arteries showed a major outward hypertrophic remodeling, resistant to losartan, and normally occurring in hypertensive conditions. Notably, arterial compliance was significantly enhanced in the absence of smFlnA. Moreover, reactivity of thoracic aorta rings to a variety of vasoconstrictors was elevated, while basal contractility in response to KCl depolarization was reduced. Enhanced reactivity to the thromboxane A2 receptor agonist U46619 was fully reversed by the ROCK inhibitor Y27632. We discuss the possibility that a reduction in arterial stiffness upon smFlnA inactivation might cause a compensatory increase in conduit artery diameter for normalization of parietal tension, independently of the ROCK pathway. In conclusion, deletion of smFlnA in adult mice recapitulates the vascular phenotype of human bilateral periventricular nodular heterotopia, culminating in aortic dilatation.


Assuntos
Artérias Carótidas/metabolismo , Artérias Carótidas/fisiologia , Filaminas/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Artérias Carótidas/efeitos dos fármacos , Humanos , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Fenótipo , Rigidez Vascular/efeitos dos fármacos , Rigidez Vascular/fisiologia , Vasoconstritores/farmacologia
15.
Cell Rep ; 14(9): 2050-2058, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923587

RESUMO

Mutations in the filamin A (FlnA) gene are frequently associated with severe arterial abnormalities, although the physiological role for this cytoskeletal element remains poorly understood in vascular cells. We used a conditional mouse model to selectively delete FlnA in smooth muscle (sm) cells at the adult stage, thus avoiding the developmental effects of the knockout. Basal blood pressure was significantly reduced in conscious smFlnA knockout mice. Remarkably, pressure-dependent tone of the resistance caudal artery was lost, whereas reactivity to vasoconstrictors was preserved. Impairment of the myogenic behavior was correlated with a lack of calcium influx in arterial myocytes upon an increase in intraluminal pressure. Notably, the stretch activation of CaV1.2 was blunted in the absence of smFlnA. In conclusion, FlnA is a critical upstream element of the signaling cascade underlying the myogenic tone. These findings allow a better understanding of the molecular basis of arterial autoregulation and associated disease states.


Assuntos
Artérias/fisiologia , Filaminas/fisiologia , Animais , Pressão Sanguínea , Sinalização do Cálcio , Células Cultivadas , Feminino , Rim/irrigação sanguínea , Masculino , Mecanotransdução Celular , Camundongos Knockout , Desenvolvimento Muscular , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia
16.
Proc Natl Acad Sci U S A ; 110(35): 14366-71, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940364

RESUMO

Large deletions in the first intron of the With No lysine (K) 1 (WNK1) gene are responsible for Familial Hyperkalemic Hypertension (FHHt), a rare form of human hypertension associated with hyperkalemia and hyperchloremic metabolic acidosis. We generated a mouse model of WNK1-associated FHHt to explore the consequences of this intronic deletion. WNK1(+/FHHt) mice display all clinical and biological signs of FHHt. This phenotype results from increased expression of long WNK1 (L-WNK1), the ubiquitous kinase isoform of WNK1, in the distal convoluted tubule, which in turn, stimulates the activity of the Na-Cl cotransporter. We also show that the activity of the epithelial sodium channel is not altered in FHHt mice, suggesting that other mechanisms are responsible for the hyperkalemia and acidosis in this model. Finally, we observe a decreased expression of the renal outer medullary potassium channel in the late distal convoluted tubule of WNK1(+/FHHt) mice, which could contribute to the hyperkalemia. In summary, our study provides insights into the in vivo mechanisms underlying the pathogenesis of WNK1-mediated FHHt and further corroborates the importance of WNK1 in ion homeostasis and blood pressure.


Assuntos
Túbulos Renais Distais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Animais , Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Canais de Potássio Corretores do Fluxo de Internalização/genética , Pseudo-Hipoaldosteronismo/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
17.
Neuroimage ; 82: 190-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747290

RESUMO

A clinical hallmark of hypertension is impairment of the cardiac vagal baroreflex, which maintains stable blood pressure and heart rate under physiological conditions. There is also evidence that oxidative stress in the brain is associated with neurogenic hypertension. We tested the hypothesis that an augmented superoxide level in the nucleus tractus solitarii (NTS), the terminal site of baroreceptor afferents, contributes to the depression of cardiac vagal baroreflex by disrupting the connectivity between the NTS and the nucleus ambiguus (NA), the origin of the vagus nerve, during neurogenic hypertension. An experimental model of neurogenic hypertension that employed intracerebroventricular infusion of angiotensin II in male adult C57BL/6 mice was used. Based on tractographic evaluations using magnetic resonance imaging/diffusion tensor imaging of the medulla oblongata in the brain stem, we found that the connectivity between the NTS and NA was disrupted in neurogenic hypertension, concurrent with impairment of the cardiac vagal baroreflex as detected by radiotelemetry. We further found that the disrupted NTS-NA connectivity was reversible, and was related to oxidative stress induced by augmented levels of NADPH oxidase-generated superoxide in the NTS. We conclude that depression of the cardiac vagal baroreflex induced by oxidative stress in the NTS in the context of neurogenic hypertension may be manifested in the form of dynamic alterations in the connectivity between the NTS and NA.


Assuntos
Barorreflexo/fisiologia , Hipertensão/fisiopatologia , Vias Neurais/fisiopatologia , Estresse Oxidativo/fisiologia , Núcleo Solitário/fisiopatologia , Animais , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Imunoprecipitação , Imageamento por Ressonância Magnética , Masculino , Bulbo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Nervo Vago/fisiopatologia
18.
Hypertension ; 61(3): 662-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23357179

RESUMO

Preeclampsia (PE) is a common human-specific pregnancy disorder defined by hypertension and proteinuria during gestation and responsible for maternal and fetal morbimortality. STOX1, encoding a transcription factor, was the first gene associated with PE as identified by positional cloning approaches. Its overexpression in choriocarcinoma cells mimics the transcriptional consequences of PE in the human placenta. Here, we created transgenic mouse strains overexpressing human STOX1. Wild-type female mice crossed with transgenic male mice reproduce accurately the symptoms of severe PE: gestational hypertension, proteinuria, and elevated plasma levels of soluble fms-like tyrosine kinase 1 and soluble endoglin. Placental and kidney histology were altered. Symptoms were prevented or alleviated by aspirin treatment. STOX1-overexpressing mice constitute a unique model for studying PE, allow testing therapeutic approaches, and assessing the long-term effects of the preeclamptic syndrome.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Aspirina/uso terapêutico , Proteínas de Transporte/biossíntese , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Animais , Proteínas de Transporte/efeitos adversos , Proteínas de Transporte/genética , Modelos Animais de Doenças , Endoglina , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos , Placenta/patologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/genética , Gravidez , Índice de Gravidade de Doença , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
19.
Arterioscler Thromb Vasc Biol ; 33(2): 339-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23264443

RESUMO

OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9±2.3%) compared with control (16.3±3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries.


Assuntos
Pressão Arterial , Músculo Liso Vascular/metabolismo , Fator de Resposta Sérica/metabolismo , Cauda/irrigação sanguínea , Resistência Vascular , Vasodilatação , Actinas/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Artérias/metabolismo , Western Blotting , Sinalização do Cálcio , Proteínas Contráteis/metabolismo , Relação Dose-Resposta a Droga , Filaminas , Regulação da Expressão Gênica , Masculino , Mecanotransdução Celular , Potenciais da Membrana , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Músculo Liso Vascular/efeitos dos fármacos , Miografia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Técnicas de Patch-Clamp , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética , Fatores de Tempo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Hypertension ; 58(3): 439-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21768522

RESUMO

Gain-of-function mutations in the human WNK1 (with-no-lysine[K]1) gene are responsible for a monogenic form of arterial hypertension, and WNK1 polymorphisms have been associated with common essential hypertension. The role of WNK1 in renal ionic reabsorption has been established, but no investigation of its possible influence on vascular tone, an essential determinant of blood pressure, has been performed until now. WNK1 complete inactivation in the mouse is embryonically lethal. We, thus, examined in Wnk1(+/-) haploinsufficient adult mice whether WNK1 could regulate in vivo vascular tone and whether this was correlated with blood pressure variation. Wnk1(+/-) mice displayed a pronounced decrease in blood pressure responses in vivo and in vascular contractions ex vivo following α(1)-adrenergic receptor activation with no change in basal blood pressure and renal function. We also observed a major loss of the pressure-induced contractile (myogenic) response in Wnk1(+/-) arteries associated with a specific alteration of the smooth muscle cell contractile function. These alterations in vascular tone were associated with a decreased phosphorylation level of the WNK1 substrate SPAK (STE20/SPS1-related proline/alanine-rich kinase) and its target NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter 1) in Wnk1(+/-) arteries. Our study identifies a novel and major role for WNK1 in maintaining in vivo blood pressure and vasoconstriction responses specific to α(1)-adrenergic receptor activation. Our findings uncover a vascular signaling pathway linking α(1)-adrenergic receptors and pressure to WNK1, SPAK, and NKCC1 and may, thus, significantly broaden the comprehension of the regulatory mechanisms of vascular tone in arterial hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Vasoconstrição/fisiologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Angiotensina II/farmacologia , Animais , Aorta Torácica/fisiologia , Western Blotting , Artérias Carótidas/fisiologia , Relação Dose-Resposta a Droga , Feminino , Haploinsuficiência , Técnicas In Vitro , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...