Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 152(5): 1036-1046, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912938

RESUMO

BACKGROUND: Lipedema, diagnosed most often in women, is a progressive disease characterized by the disproportionate and symmetrical distribution of adipose tissue, primarily in the extremities. Although numerous results from in vitro and in vivo studies have been published, many questions regarding the pathology and genetic background of lipedema remain unanswered. METHODS: In this study, adipose tissue-derived stromal/stem cells were isolated from lipoaspirates derived from nonobese and obese donors with or without lipedema. Growth and morphology, metabolic activity, differentiation potential, and gene expression were evaluated using quantification of lipid accumulation, metabolic activity assay, live-cell imaging, reverse transcription polymerase chain reaction, quantitative polymerase chain reaction, and immunocytochemical staining. RESULTS: The adipogenic potential of lipedema and nonlipedema adipose tissue-derived stromal/stem cells did not rise in parallel with the donors' body mass index and did not differ significantly between groups. However, in vitro differentiated adipocytes from nonobese lipedema donors showed significant upregulation of adipogenic gene expression compared with nonobese controls. All other genes tested were expressed equally in lipedema and nonlipedema adipocytes. The adiponectin/leptin ratio was significantly reduced in adipocytes from obese lipedema donors compared with their nonobese lipedema counterparts. Increased stress fiber-integrated smooth muscle actin was visible in lipedema adipocytes compared with nonlipedema controls and appeared enhanced in adipocytes from obese lipedema donors. CONCLUSIONS: Not only lipedema per se but also body mass index of donors affect adipogenic gene expression substantially in vitro. The significantly reduced adiponectin/leptin ratio and the increased occurrence of myofibroblast-like cells in obese lipedema adipocyte cultures underscores the importance of attention to the co-occurrence of lipedema and obesity. These are important findings toward accurate diagnosis of lipedema. CLINICAL RELEVANCE STATEMENT: Our study highlights not only the difficulty in lipedema diagnostics but also the tremendous need for further studies on lipedema tissue. Although lipedema might seem to be an underestimated field in plastic and reconstructive surgery, the power it holds to provide better treatment to future patients can not be promoted enough.


Assuntos
Leptina , Lipedema , Humanos , Feminino , Leptina/metabolismo , Lipedema/diagnóstico , Lipedema/patologia , Adiponectina/metabolismo , Adipócitos/fisiologia , Obesidade/complicações , Células Cultivadas
2.
J Pers Med ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36675759

RESUMO

When studying the current literature, one might get the impression that lipedema is a "modern" disease, with increasing incidence and augmenting prevalence throughout Western countries during the last decade. However, a quick look into older textbooks shows that disproportionate accumulation of fat in female bodies has long been known without being recognized as an independent disease. Nevertheless, it was not until 1940 that Allen and Hines described a "syndrome characterized by fat legs and orthostatic edema" in a seminal publication. The mere awareness that people who have lipedema are not just overweight but suffer from a yet poorly defined pathological condition, may be considered a decisive leap forward in the understanding of lipedema. A number of comprehensive publications have since dealt with the clinical presentation of lipedema and have provided the first clues towards the potential pathological mechanisms underlying its initiation and progression. Nevertheless, despite all effort that has been undertaken to unravel lipedema pathology, many questions have remained unanswered. What can be deduced with certainty from all experimental and medical evidence available so far is that lipedema is neither a cosmetic problem nor is it a problem of lifestyle but should be accepted as a serious disease with yet undetermined genetic background, which makes women's lives unbearable from both a physical and psychological point of view. To date, results from clinical inspections have led to the categorization of various types and stages of lipedema, describing how the extremities are affected and evaluating its progression, as demonstrated by skin alterations, adipose tissue volume increase and physical and everyday-behavioral impediments. There is accumulating evidence showing that advanced stages of lipedema are usually accompanied by excessive weight or obesity. Thus, it is not unreasonable to assume that the progression of lipedema is largely driven by weight gain and the pathological alterations associated with it. Similarly, secondary lymphedema is frequently found in lipedema patients at advanced stages. Needless to say, both conditions considerably blur the clinical presentation of lipedema, making diagnosis difficult and scientific research challenging. The present literature review will focus on lipedema research, based on evidence fromex vivo and in vitro data, which has accumulated throughout the last few decades. We will also open the discussion as to whether the currently used categorization of lipedema stages is still sufficient and up-to-date for the accurate description of this enigmatic disease, whose name, strangely enough, does not match its pathologic correlate.

3.
Int J Mol Sci ; 20(21)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684130

RESUMO

With age, our cognitive skills and abilities decline. Maybe starting as an annoyance, this decline can become a major impediment to normal daily life. Recent research shows that the neurodegenerative disorders responsible for age associated cognitive dysfunction are mechanistically linked to the state of the microvasculature in the brain. When the microvasculature does not function properly, ischemia, hypoxia, oxidative stress and related pathologic processes ensue, further damaging vascular and neural function. One of the most important and specialized functions of the brain microvasculature is the blood-brain barrier (BBB), which controls the movement of molecules between blood circulation and the brain parenchyma. In this review, we are focusing on tight junctions (TJs), the multiprotein complexes that play an important role in establishing and maintaining barrier function. After a short introduction of the cell types that modulate barrier function via intercellular communication, we examine how age, age related pathologies and the aging of the immune system affects TJs. Then, we review how the TJs are affected in age associated neurodegenerative disorders: Alzheimer's disease and Parkinson's disease. Lastly, we summarize the TJ aspects of Huntington's disease and schizophrenia. Barrier dysfunction appears to be a common denominator in neurological disorders, warranting detailed research into the molecular mechanisms behind it. Learning the commonalities and differences in the pathomechanism of the BBB injury in different neurological disorders will predictably lead to development of new therapeutics that improve our life as we age.


Assuntos
Envelhecimento , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Microvasos/metabolismo , Doenças Neurodegenerativas/metabolismo , Junções Íntimas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/irrigação sanguínea , Humanos , Doença de Parkinson/metabolismo
4.
Sci Rep ; 7(1): 780, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28396584

RESUMO

Chronic and acute tendinopathies are difficult to treat and tendon healing is generally a very slow and incomplete process and our general understanding of tendon biology and regeneration lags behind that of muscle or bone. Although still largely unexplored, several studies suggest a positive effect of nutritional interventions on tendon health and repair. With this study, we aim to reveal effects of a high-glucose diet on tendon neoformation in a non-diabetic rat model of Achilles tenotomy. After surgery animals received either a high-glucose diet or a control diet for 2 and 4 weeks, respectively. Compared to the control group, tendon repair tissue thickness and stiffness were increased in the high-glucose group after 2 weeks and gait pattern was altered after 1 and 2 weeks. Cell proliferation was up to 3-fold higher and the expression of the chondrogenic marker genes Sox9, Col2a1, Acan and Comp was significantly increased 2 and 4 weeks post-surgery. Further, a moderate increase in cartilage-like areas within the repair tissue was evident after 4 weeks of a high-glucose diet regimen. In summary, we propose that a high-glucose diet significantly affects tendon healing after injury in non-diabetic rats, potentially driving chondrogenic degeneration.


Assuntos
Tendão do Calcâneo/metabolismo , Dieta , Glucose , Traumatismos dos Tendões/metabolismo , Cicatrização , Animais , Fenômenos Biomecânicos , Proliferação de Células , Marcha , Expressão Gênica , Tamanho do Órgão , Ratos , Traumatismos dos Tendões/patologia
5.
J Tissue Eng Regen Med ; 11(7): 2014-2023, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26510918

RESUMO

Despite significant advancements in bone tissue-engineering applications, the clinical impact of bone marrow stromal cells (BMSCs) for the treatment of large osseous defects remains limited. Therefore, other cell sources are under investigation for their osteogenic potential to repair bone. In this study, tendon-derived stromal cells (TDSCs) were evaluated in comparison to BMSCs to support the functional repair of a 5 mm critical-sized, segmental defect in the rat femur. Analysis of the trilineage differentiation capacity of TDSCs and BMSCs cultured on collagen sponges revealed impaired osteogenic differentiation and mineral deposition of TDSCs in vitro, whereas chondrogenic and adipogenic differentiation was evident for both cell types. Radiographic assessment demonstrated that neither cell type significantly improved the healing rate of a challenging 5 mm segmental femoral defect. Transplanted TDSCs and BMSCs both led to the formation of only small amounts of bone in the defect area, and histological evaluation revealed non-mineralized, collagen-rich scar tissue to be present within the defect area. Newly formed lamellar bone was restricted to the defect margins, resulting in closure of the medullary cavity. Interestingly, in comparison to BMSCs, significantly more TDSC-derived cells were present at the osteotomy gap up to 8 weeks after transplantation and were also found to be located within newly formed lamellar bone, suggesting their capacity to directly contribute to de novo bone formation. To our knowledge, this is the first study investigating the in vivo capacity of TDSCs to regenerate a critical-sized defect in the rat femur. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Fêmur/lesões , Fêmur/metabolismo , Osteogênese , Tendões/metabolismo , Animais , Células da Medula Óssea/patologia , Fêmur/patologia , Masculino , Ratos , Ratos Endogâmicos F344 , Células Estromais/metabolismo , Células Estromais/patologia , Tendões/patologia
6.
Sci Rep ; 6: 32635, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27586416

RESUMO

Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc-/- tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc-/- tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons.


Assuntos
Envelhecimento/metabolismo , Pleiotropia Genética , Osteonectina/metabolismo , Tendões/crescimento & desenvolvimento , Tendões/metabolismo , Adipogenia , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Forma Celular , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Osteonectina/deficiência , Ratos , Células-Tronco/citologia , Tendões/fisiologia , Tendões/ultraestrutura
7.
Curr Pharm Des ; 22(35): 5442-5462, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27464716

RESUMO

Besides being indispensable for the protection and nutrition of the central nervous system (CNS), blood-brain barrier (BBB)-forming cerebral endothelial cells (CECs) have a major role in hampering drugs to reach therapeutically relevant concentrations in the brain. In this respect, the most important defense systems of CECs are tight junctions (TJs) sealing the paracellular way of transport, efflux pumps (ABC transporters) and metabolic enzymes. Here we review current strategies aiming at overcoming the BBB with the purpose of effectively delivering drugs to the CNS. Besides chemical modification of drug candidates to improve CNS availability, the main strategies include: bypassing the BBB (intracranial or nasal routes), reversible opening of TJs (using hyperosmotic mannitol, ultrasounds, peptides and other physical methods or chemical agents), vector-mediated drug delivery systems (nanocarriers, exploitation of receptor- and carrier-mediated transport) and inhibition of efflux transporters. We discuss the main advantages, disadvantages and clinical relevance of each strategy. Special emphasis will be given to the description of the chemical characteristics of nanoparticles (lipidic, polymeric, inorganic, etc.) and the main strategies of targeting them to the CNS.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Animais , Humanos
8.
Exp Eye Res ; 147: 20-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27107794

RESUMO

Aquaporins (AQPs) are important for ocular homeostasis and function. While AQP expression has been investigated in ocular tissues of human, mouse, rat and dog, comprehensive data in rabbits are missing. As rabbits are frequently used model organisms in ophthalmic research, the aim of this study was to analyze mRNA expression and to localize AQPs in the rabbit eye. The results were compared with the data published for other species. In cross sections of New Zealand White rabbit eyes AQP0 to AQP5 were labeled by immunohistology and analyzed by confocal microscopy. Immunohistological findings were compared to mRNA expression levels, which were analyzed by quantitative reverse transcription real time polymerase chain reaction (qRT-PCR). The primers used were homologous against conserved regions of AQPs. In the rabbit eye, AQP0 protein expression was restricted to the lens, while AQP1 was present in the cornea, the chamber angle, the iris, the ciliary body, the retina and, to a lower extent, in optic nerve vessels. AQP3 and AQP5 showed immunopositivity in the cornea. AQP3 was also present in the conjunctiva, which could not be confirmed for AQP5. However, at a low level AQP5 was also traceable in the lens. AQP4 protein was detected in the ciliary non-pigmented epithelium (NPE), the retina, optic nerve astrocytes and extraocular muscle fibers. For most tissues the qRT-PCR data confirmed the immunohistology results and vice versa. Although species differences exist, the AQP protein expression pattern in the rabbit eye shows that, especially in the anterior section, the AQP distribution is very similar to human, mouse, rat and dog. Depending on the ocular regions investigated in rabbit, different protein and mRNA expression results were obtained. This might be caused by complex gene regulatory mechanisms, post-translational protein modifications or technical limitations. However, in conclusion the data suggest that the rabbit is a useful in-vivo model to study AQP function and the effects of direct and indirect intervention strategies to investigate e. g. mechanisms for intraocular pressure modulation or cornea transparency regulation.


Assuntos
Aquaporinas/metabolismo , Olho/metabolismo , Animais , Imuno-Histoquímica , Cristalino/metabolismo , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Nat Commun ; 6: 8466, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26506265

RESUMO

As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood-brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias.


Assuntos
Envelhecimento/efeitos dos fármacos , Antiasmáticos/administração & dosagem , Encéfalo/efeitos dos fármacos , Adulto , Fatores Etários , Envelhecimento/fisiologia , Animais , Encéfalo/fisiologia , Cognição , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Aprendizagem em Labirinto , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Adulto Jovem
11.
Exp Neurol ; 269: 75-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25819103

RESUMO

The presence of neural stem/progenitor cells (NSPCs) in specific areas of the central nervous system (CNS) supports tissue maintenance as well as regeneration. The subependymal zone (SEZ), located at the lateral ventricle's wall, represents a niche for NSPCs and in response to stroke or demyelination becomes activated with progenitors migrating towards the lesion and differentiating into neurons and glia. The mechanisms that underlie this phenomenon remain largely unknown. The vascular niche and in particular blood-derived elements such as platelets, has been shown to contribute to CNS regeneration in different pathological conditions. Indeed, intracerebroventricularly administrated platelet lysate (PL) stimulates angiogenesis, neurogenesis and neuroprotection in the damaged CNS. Here, we explored the presence of platelets in the activated SEZ after a focal demyelinating lesion in the corpus callosum of mice and we studied the effects of PL on proliferating SEZ-derived NSPCs in vitro. We showed that the lesion-induced increase in the size of the SEZ and in the number of proliferating SEZ-resident NSPCs correlates with the accumulation of platelets specifically along the activated SEZ vasculature. Expanding on this finding, we demonstrated that exposure of NSPCs to PL in vitro led to increased numbers of cells by enhanced cell survival and reduced apoptosis without differences in proliferation and in the differentiation potential of NSPCs. Finally, we demonstrate that the accumulation of platelets within the SEZ is spatially correlated with reduced numbers of apoptotic cells when compared to other periventricular areas. In conclusion, our results show that platelet-derived compounds specifically promote SEZ-derived NSPC survival and suggest that platelets might contribute to the enlargement of the pool of SEZ NSPCs that are available for CNS repair in response to injury.


Assuntos
Plaquetas/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Células-Tronco Adultas/citologia , Animais , Lesões Encefálicas/patologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neurônios/citologia
12.
Front Neurosci ; 8: 392, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520612

RESUMO

The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the "developmental tightening" of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell-cell adhesion, cytoskeletal rearrangement, and transcriptional control. This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial TJs will be given.

13.
PLoS One ; 9(9): e106592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211495

RESUMO

To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood-CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood-CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised choroid plexus epithelial cells.


Assuntos
Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Osteonectina/metabolismo , Albumina Sérica/metabolismo , Animais , Plexo Corióideo/irrigação sanguínea , Plexo Corióideo/patologia , Epitélio/irrigação sanguínea , Epitélio/metabolismo , Humanos , Camundongos , Transporte Proteico/genética , Albumina Sérica/líquido cefalorraquidiano
14.
Arch Orthop Trauma Surg ; 134(11): 1573-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25073617

RESUMO

Tears of the anterior cruciate ligament (ACL) are very frequent injuries, particularly in young and active people. Arthroscopic reconstruction using tendon auto- or allograft represents the gold-standard for the management of ACL tears. Interestingly, the ACL has the potential to heal upon intensive non-surgical rehabilitation procedures. Several biological factors influence this healing process as local intraligamentous cytokines and mainly cell repair mechanisms controlled by stem cells or progenitor cells. Understanding the mechanisms of this regeneration process and the cells involved may pave the way for novel, less invasive and biology-based strategies for ACL repair. This review aims to focus on the current knowledge on the mechanisms of ACL healing, the nature and potential of ligament derived stem/progenitor cells as well as on the potential and the limitations of using mesenchymal stem cells (MSCs) for treating injured ACL.


Assuntos
Lesões do Ligamento Cruzado Anterior , Transplante de Células-Tronco , Cicatrização , Reconstrução do Ligamento Cruzado Anterior/métodos , Humanos , Lesões dos Tecidos Moles/terapia
15.
Pigment Cell Melanoma Res ; 27(1): 113-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24148763

RESUMO

We have investigated the role of the Rho/ROCK signaling pathway in the interaction of metastatic melanoma cells with the brain endothelium. ROCK inhibition induced a shift of melanoma cells to the mesenchymal phenotype, increased the number of melanoma cells attached to the brain endothelium, and strengthened the adhesion force between melanoma and endothelial cells. Inhibition of ROCK raised the number of melanoma cells migrating through the brain endothelial monolayer and promoted the formation of parenchymal brain metastases in vivo. We have shown that inhibition of the Rho/ROCK pathway in melanoma, but not in brain endothelial cells, is responsible for this phenomenon. Our results indicate that the mesenchymal type of tumor cell movement is primordial in the transmigration of melanoma cells through the blood-brain barrier.


Assuntos
Barreira Hematoencefálica/enzimologia , Comunicação Celular , Movimento Celular , Células Endoteliais/enzimologia , Melanoma/enzimologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Animais , Barreira Hematoencefálica/patologia , Linhagem Celular Tumoral , Células Endoteliais/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Quinases Associadas a rho/genética
16.
Front Neurosci ; 8: 404, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565938

RESUMO

Careful examination of relevant literature shows that many of the most cherished concepts of the blood-brain barrier are incorrect. These include an almost mythological belief in its immaturity that is unfortunately often equated with absence or at least leakiness in the embryo and fetus. The original concept of a blood-brain barrier is often attributed to Ehrlich; however, he did not accept that permeability of cerebral vessels was different from other organs. Goldmann is often credited with the first experiments showing dye (trypan blue) exclusion from the brain when injected systemically, but not when injected directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed methylene blue and trypan red stained all tissues except the brain. The term "blood-brain barrier" "Blut-Hirnschranke" is often attributed to Lewandowsky, but it does not appear in his papers. The first person to use this term seems to be Stern in the early 1920s. Studies in embryos by Stern and colleagues, Weed and Wislocki showed results similar to those in adult animals. These were well-conducted experiments made a century ago, thus the persistence of a belief in barrier immaturity is puzzling. As discussed in this review, evidence for this belief, is of poor experimental quality, often misinterpreted and often not properly cited. The functional state of blood-brain barrier mechanisms in the fetus is an important biological phenomenon with implications for normal brain development. It is also important for clinicians to have proper evidence on which to advise pregnant women who may need to take medications for serious medical conditions. Beliefs in immaturity of the blood-brain barrier have held the field back for decades. Their history illustrates the importance of taking account of all the evidence and assessing its quality, rather than selecting papers that supports a preconceived notion or intuitive belief. This review attempts to right the wrongs. Based on careful translation of original papers, some published a century ago, as well as providing discussion of studies claiming to show barrier immaturity, we hope that readers will have evidence on which to base their own conclusions.

17.
PLoS One ; 8(7): e65629, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843944

RESUMO

We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas de Transporte/genética , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Barreira Hematoencefálica/citologia , Proteínas de Transporte/metabolismo , Plexo Corióideo/citologia , Claudinas/genética , Claudinas/metabolismo , Embrião de Mamíferos , Células Epiteliais/citologia , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Transporte de Íons , Microscopia Eletrônica , Ocludina/genética , Ocludina/metabolismo , Permeabilidade , Gravidez , Ratos , Ratos Sprague-Dawley
18.
Am J Sports Med ; 41(6): 1411-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23661215

RESUMO

BACKGROUND: Toxicity of the local anesthetic bupivacaine (BV) has been a matter of debate across medical fields. Numerous in vitro studies demonstrate considerable toxicity of BV on various cell types. PURPOSE: This study addresses the question of how tendon tissue responds to BV in vivo and in vitro. STUDY DESIGN: Controlled laboratory study. METHODS: In vitro studies on cultured rat Achilles tendon-derived cells were performed with cell viability assays and cleaved caspase 3 immunocytochemistry. Quantitative reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, and a biomechanical testing routine were applied on rat Achilles tendons at 1 and 4 weeks after a single unilateral peritendinous injection of 0.5% BV. The BV-mediated cell death in tendons was estimated with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and immunohistochemical detection of cleaved caspase 3. RESULTS: Treatment of rat tendon-derived cells with 0.5% bupivacaine for 10 minutes had detrimental effects on cell viability, which can be reduced by N-acetyl-L-cysteine or reduction of extracellular calcium. In vivo, single peritendinous injections of BV caused apoptosis in endotenon cells and an increase of pro-matrix metalloproteinase-9 after 6 hours. The collagen ratio shifted toward collagen type III after 6 hours and 2 days; scleraxis messenger RNA (mRNA) expression was reduced by 87%. Maximum tensile load was reduced by 17.6% after 1 week. CONCLUSION: Bupivacaine exerts a severe, reactive oxygen species-mediated effect on tendon cell viability in vitro in a time- and dose-dependent manner, depending on extracellular calcium concentration. Culture conditions need to be taken into account when in vitro data are translated into the in vivo situation. In vivo, administration of BV elicits a marked but temporary functional damage. CLINICAL RELEVANCE: Local anesthetics cause short-term alterations in rat tendons, which, if occurring in humans to a similar extent, may be relevant regarding decreased biomechanical properties and increased vulnerability to tendon overload or injury.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Anestésicos Locais/toxicidade , Apoptose/efeitos dos fármacos , Bupivacaína/toxicidade , Tendão do Calcâneo/citologia , Tendão do Calcâneo/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fenômenos Biomecânicos , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Ruptura/induzido quimicamente , Resistência à Tração , Fatores de Tempo
19.
Tissue Barriers ; 1(2): e25039, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24665396

RESUMO

Zonula occludens proteins (ZO-1, ZO-2, ZO-3), which belong to the family of membrane-associated guanylate kinase (MAGUK) homologs, serve as molecular hubs for the assembly of multi-protein networks at the cytoplasmic surface of intercellular contacts in epithelial and endothelial cells. These multi-PDZ proteins exert crucial functions in the structural organization of intercellular contacts and in transducing intracellular signals from the plasma membrane to the nucleus. The junctional MAGUK protein ZO-2 not only associates with the C-terminal PDZ-binding motif of various transmembrane junctional proteins but also transiently targets to the nucleus and interacts with a number of nuclear proteins, thereby modulating gene expression and cell proliferation. Recent evidence suggests that ZO-2 is also involved in stress response and cytoprotective mechanisms, which further highlights the multi-faceted nature of this PDZ domain-containing protein. This review focuses on ZO-2 acting as a molecular scaffold at the cytoplasmic aspect of tight junctions and within the nucleus and discusses additional aspects of its cellular activities. The multitude of proteins interacting with ZO-2 and the heterogeneity of proteins either influencing or being influenced by ZO-2 suggests an exceptional functional capacity of this protein far beyond merely serving as a structural component of cellular junctions.

20.
Drug Discov Today ; 18(9-10): 456-63, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23266366

RESUMO

Brain pericytes (BrPCs) are essential cellular components of the central nervous system neurovascular unit involved in the regulation of blood flow, blood-brain barrier function, as well as in the stabilization of the vessel architecture. More recently, it became evident that BrPCs, besides their regulatory activities in brain vessel function and homeostasis, have pleiotropic functions in the adult CNS ranging from stromal and regeneration promoting activities to stem cell properties. This special characteristic confers BrPC cell plasticity, being able to display features of other cells within the organism. BrPCs might also be causally involved in certain brain diseases. Due to these properties BrPCs might be potential drug targets for future therapies of neurological disorders. This review summarizes BrPC properties, disorders in which this cell type might be involved, and provides suggestions for future therapeutic developments targeting BrPCs.


Assuntos
Encéfalo/citologia , Doenças do Sistema Nervoso Central/patologia , Pericitos/fisiologia , Animais , Doenças do Sistema Nervoso Central/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...