Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(12): e0145639, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713621

RESUMO

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8-87.9%), with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S)) accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7-1.5, O/C = 0.1-0.67), suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS) was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5-2.2, O/C = 0.3-0.67), lipid (H/C = 1.5-2.0, O/C = 0-0.3), and unsaturated hydrocarbon (H/C = 0.7-1.5, O/C = 0-0.1) being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light+bacterial incubations, supporting the contention that black carbon is labile to light alterations. Collectively, our data demonstrate that headwater DOM composition contains integrative information on watershed sources and processes, and the application of ESI-FTICR-MS technique offers additional insights into compound composition and reactivity unrevealed by fluorescence and stable carbon isotopic measurements.


Assuntos
Florestas , Análise de Fourier , Compostos Orgânicos/química , Rios/química , Espectrometria de Massas por Ionização por Electrospray , Monitoramento Ambiental , Luz
2.
Nature ; 504(7478): 61-70, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305149

RESUMO

The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget.


Assuntos
Ciclo do Carbono , Oceanos e Mares , Ecossistema , Sedimentos Geológicos , Humanos , Rios/química , Áreas Alagadas
3.
Ecology ; 91(8): 2385-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20836460

RESUMO

Recent studies indicate that highly aged material is a major component of organic matter transported by most rivers. However, few studies have used natural 14C to trace the potential entry of this aged material into modern river food webs. Here we use natural abundance 14C, 13C, and deuterium (2H) to trace the contribution of aged and contemporary organic matter to an important group of consumers, crustacean zooplankton, in a large temperate river (the Hudson River, New York, USA). Zooplankton were highly 14C depleted (mean delta14C = -240 per thousand) compared to modern primary production in the river or its watershed (delta14C = -60 per thousand to +50 per thousand). In order to account for the observed 14C depletion, zooplankton must be subsidized by highly aged particulate organic carbon. IsoSource modeling suggests that the range of the aged dietary subsidy is between approximately 57%, if the aged organic matter source was produced 3400 years ago, and approximately 21%, if the organic carbon used is > or = 50 000 years in age, including fossil material that is millions of years in age. The magnitude of this aged carbon subsidy to river zooplankton suggests that modern river food webs may in some cases be buffered from the limitations set by present-day primary production.


Assuntos
Carbono , Cadeia Alimentar , Rios , Animais , Radioisótopos de Carbono , Cladocera/fisiologia , Copépodes/fisiologia , New York , Fatores de Tempo , Zooplâncton/fisiologia
4.
Nature ; 430(7002): 877-81, 2004 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15318218

RESUMO

Seawater dissolved organic matter (DOM) is the largest reservoir of exchangeable organic carbon in the ocean, comparable in quantity to atmospheric carbon dioxide. The composition, turnover times and fate of all but a few planktonic constituents of this material are, however, largely unknown. Models of ocean carbon cycling are thus limited by the need for information on temporal scales of carbon storage in DOM subcomponents, produced via the 'biological pump', relative to their recycling by bacteria. Here we show that carbohydrate- and protein-like substances in the open Atlantic and Pacific oceans, though often significantly aged, comprise younger fractions of the DOM, whereas dissolved lipophilic material exhibits up to approximately 90 per cent fossil character. In contrast to the millennial mean ages of DOM observed throughout the water column, weighted mean turnover times of DOM in the surface ocean are only decadal in magnitude. An observed size-age continuum further demonstrates that small dissolved molecules are the most highly aged forms of organic matter, cycling much more slowly than larger, younger dissolved and particulate precursors, and directly links oceanic organic matter age and size with reactivity.


Assuntos
Carboidratos/análise , Compostos Orgânicos/análise , Compostos Orgânicos/química , Proteínas/análise , Água do Mar/química , Oceano Atlântico , Atmosfera , Bactérias/metabolismo , Carboidratos/química , Dióxido de Carbono/análise , Isótopos de Carbono , Fósseis , Lipídeos/análise , Lipídeos/química , Oceano Pacífico , Plâncton/química , Plâncton/metabolismo , Proteínas/química , Solubilidade , Fatores de Tempo
5.
Science ; 304(5669): 408-14, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15087542

RESUMO

The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.


Assuntos
Carbono/metabolismo , Ferro , Fitoplâncton/crescimento & desenvolvimento , Ácido Silícico , Atmosfera , Biomassa , Carbono/análise , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Clorofila/análise , Clorofila A , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Ecossistema , Ferro/análise , Ferro/metabolismo , Nitratos/análise , Nitratos/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Oceanos e Mares , Fotossíntese , Fitoplâncton/metabolismo , Água do Mar/química , Ácido Silícico/análise , Ácido Silícico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...