Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7976): 982-987, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37648758

RESUMO

First-person view (FPV) drone racing is a televised sport in which professional competitors pilot high-speed aircraft through a 3D circuit. Each pilot sees the environment from the perspective of their drone by means of video streamed from an onboard camera. Reaching the level of professional pilots with an autonomous drone is challenging because the robot needs to fly at its physical limits while estimating its speed and location in the circuit exclusively from onboard sensors1. Here we introduce Swift, an autonomous system that can race physical vehicles at the level of the human world champions. The system combines deep reinforcement learning (RL) in simulation with data collected in the physical world. Swift competed against three human champions, including the world champions of two international leagues, in real-world head-to-head races. Swift won several races against each of the human champions and demonstrated the fastest recorded race time. This work represents a milestone for mobile robotics and machine intelligence2, which may inspire the deployment of hybrid learning-based solutions in other physical systems.

2.
PLoS One ; 18(6): e0287611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37390072

RESUMO

Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-review process. In this work, we present a transformer-based, neural-network architecture that only uses the text content and the author names in the bibliography to attribute an anonymous manuscript to an author. To train and evaluate our method, we created the largest authorship-identification dataset to date. It leverages all research papers publicly available on arXiv amounting to over 2 million manuscripts. In arXiv-subsets with up to 2,000 different authors, our method achieves an unprecedented authorship attribution accuracy, where up to 73% of papers are attributed correctly. We present a scaling analysis to highlight the applicability of the proposed method to even larger datasets when sufficient compute capabilities are more widely available to the academic community. Furthermore, we analyze the attribution accuracy in settings where the goal is to identify all authors of an anonymous manuscript. Thanks to our method, we are not only able to predict the author of an anonymous work but we also provide empirical evidence of the key aspects that make a paper attributable. We have open-sourced the necessary tools to reproduce our experiments.


Assuntos
Autoria , Aprendizado Profundo , Método Duplo-Cego , Fontes de Energia Elétrica , Redes Neurais de Computação
3.
Sci Robot ; 7(67): eabl6259, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731886

RESUMO

Autonomous, agile quadrotor flight raises fundamental challenges for robotics research in terms of perception, planning, learning, and control. A versatile and standardized platform is needed to accelerate research and let practitioners focus on the core problems. To this end, we present Agilicious, a codesigned hardware and software framework tailored to autonomous, agile quadrotor flight. It is completely open source and open hardware and supports both model-based and neural network-based controllers. Also, it provides high thrust-to-weight and torque-to-inertia ratios for agility, onboard vision sensors, graphics processing unit (GPU)-accelerated compute hardware for real-time perception and neural network inference, a real-time flight controller, and a versatile software stack. In contrast to existing frameworks, Agilicious offers a unique combination of flexible software stack and high-performance hardware. We compare Agilicious with prior works and demonstrate it on different agile tasks, using both model-based and neural network-based controllers. Our demonstrators include trajectory tracking at up to 5g and 70 kilometers per hour in a motion capture system, and vision-based acrobatic flight and obstacle avoidance in both structured and unstructured environments using solely onboard perception. Last, we demonstrate its use for hardware-in-the-loop simulation in virtual reality environments. Because of its versatility, we believe that Agilicious supports the next generation of scientific and industrial quadrotor research.


Assuntos
Robótica , Simulação por Computador , Redes Neurais de Computação , Software , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA