Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(16): 13025-33, 2001 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-11278876

RESUMO

The ferric siderophore transporters of the Gram-negative bacterial outer membrane manifest a unique architecture: Their N termini fold into a globular domain that lodges within, and physically obstructs, a transmembrane porin beta-barrel formed by their C termini. We exchanged and deleted the N termini of two such siderophore receptors, FepA and FhuA, which recognize and transport ferric enterobactin and ferrichrome, respectively. The resultant chimeric proteins and empty beta-barrels avidly bound appropriate ligands, including iron complexes, protein toxins, and viruses. Thus, the ability to recognize and discriminate these molecules fully originates in the transmembrane beta-barrel domain. Both the hybrid and the deletion proteins also transported the ferric siderophore that they bound. The FepA constructs showed less transport activity than wild type receptor protein, but the FhuA constructs functioned with turnover numbers that were equivalent to wild type. The mutant proteins displayed the full range of transport functionalities, despite their aberrant or missing N termini, confirming (Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049) that the globular domain within the pore is dispensable to the siderophore internalization reaction, and when present, acts without specificity during solute uptake. These and other data suggest a transport process in which siderophore receptors undergo multiple conformational states that ultimately expel the N terminus from the channel concomitant with solute internalization.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Porinas/metabolismo , Receptores de Superfície Celular , Receptores Virais/química , Receptores Virais/metabolismo , Enterobactina/metabolismo , Escherichia coli/genética , Ferricromo/metabolismo , Genótipo , Cinética , Ligantes , Modelos Moleculares , Reação em Cadeia da Polimerase , Porinas/química , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência
2.
J Biol Chem ; 276(13): 10218-23, 2001 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-11120744

RESUMO

Saccharomyces cerevisiae takes up siderophore-bound iron through two distinct systems, one that requires siderophore transporters of the ARN family and one that requires the high affinity ferrous iron transporter on the plasma membrane. Uptake through the plasma membrane ferrous iron transporter requires that the iron first must dissociate from the siderophore and undergo reduction to the ferrous form. FRE1 and FRE2 encode cell surface metalloreductases that are required for reduction and uptake of free ferric iron. The yeast genome contains five additional FRE1 and FRE2 homologues, four of which are regulated by iron and the major iron-dependent transcription factor, Aft1p, but whose function remains unknown. Fre3p was required for the reduction and uptake of ferrioxamine B-iron and for growth on ferrioxamine B, ferrichrome, triacetylfusarinine C, and rhodotorulic acid in the absence of Fre1p and Fre2p. By indirect immunofluorescence, Fre3p was expressed on the plasma membrane in a pattern similar to that of Fet3p, a component of the high affinity ferrous transporter. Enterobactin, a catecholate siderophore, was not a substrate for Fre3p, and reductive uptake required either Fre1p or Fre2p. Fre4p could facilitate utilization of rhodotorulic acid-iron when the siderophore was present in higher concentrations. We propose that Fre3p and Fre4p are siderophore-iron reductases and that the apparent redundancy of the FRE genes confers the capacity to utilize iron from a variety of siderophore sources.


Assuntos
Membrana Celular/enzimologia , FMN Redutase , Ferro/farmacocinética , Proteínas de Membrana Transportadoras , Oxirredutases/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Sideróforos/farmacocinética , Proteínas de Transporte/metabolismo , Desferroxamina/metabolismo , Relação Dose-Resposta a Droga , Enterobactina/metabolismo , Enterobactina/farmacocinética , Compostos Férricos/metabolismo , Ferricromo/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Microscopia de Fluorescência , NADH NADPH Oxirredutases/genética , Oxirredutases/metabolismo , Piperazinas/metabolismo , Plasmídeos/metabolismo , Sideróforos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA