Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14816, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684359

RESUMO

Energetic tidal currents in the Arctic play an important role in local mixing processes, but they are primarily confined to the shelves and continental slopes due to topographic trapping north of their critical latitude. Recent studies employing idealized models have suggested that the emergence of higher harmonic tidal waves along these slopes could serve as a conduit for tidal energy transmission into the Arctic Basin. Here we provide observational support from an analysis of yearlong observations from three densely-instrumented oceanographic moorings spanning 30 km across the continental slope north of Svalbard ([Formula: see text]81.3[Formula: see text]N). Full-depth current records show strong barotropic diurnal tidal currents, dominated by the K[Formula: see text] constituent. These sub-inertial currents vary sub-seasonally and are strongest at the 700-m isobath due to the topographic trapping. Coinciding with the diurnal tide peak in summer 2019, we observe strong baroclinic semidiurnal currents exceeding 10 cm s[Formula: see text] between 500 m and 1000 m depth about 10 km further offshore at the outer mooring. In this semidiurnal band, we identify super-inertial K[Formula: see text] waves, and present evidence that their frequency, timing, polarization, propagation direction and depths are consistent with the generation as higher harmonics of the topographically trapped K[Formula: see text] tide at the continental slope.

2.
Sci Data ; 7(1): 275, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826909

RESUMO

Tidal and wind-driven near-inertial currents play a vital role in the changing Arctic climate and the marine ecosystems. We compiled 429 available moored current observations taken over the last two decades throughout the Arctic to assemble a pan-Arctic atlas of tidal band currents. The atlas contains different tidal current products designed for the analysis of tidal parameters from monthly to inter-annual time scales. On shorter time scales, wind-driven inertial currents cannot be analytically separated from semidiurnal tidal constituents. Thus, we include 10-30 h band-pass filtered currents, which include all semidiurnal and diurnal tidal constituents as well as wind-driven inertial currents for the analysis of high-frequency variability of ocean dynamics. This allows for a wide range of possible uses, including local case studies of baroclinic tidal currents, assessment of long-term trends in tidal band kinetic energy and Arctic-wide validation of ocean circulation models. This atlas may also be a valuable tool for resource management and industrial applications such as fisheries, navigation and offshore construction.

3.
Science ; 356(6335): 285-291, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28386025

RESUMO

Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA