Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Dent ; 139: 104724, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797812

RESUMO

OBJECTIVE: To evaluate the difference in the proteomic profile of stimulated saliva in patients with gastroesophageal reflux disease (GERD) with (GE) and without (GNE) erosive tooth wear (ETW), regarding both human and bacterial proteins. METHODS: Stimulated saliva (SS) was collected from 16 patients (8/group). Samples were centrifuged at 4.500 g for 15 min under refrigeration to remove all debris. The supernatant from each saliva sample was taken and frozen at -80 °C. After extracting the proteins, they were submitted to reverse phase liquid chromatography and mass spectrometry (nLC-ESI-MS/MS). Label-free proteomic quantification was performed using Protein Lynx Global Service (PLGS) software (p < 0.05) for human and bacterial proteins. RESULTS: In total, 67 human proteins were common for GNE and GE groups. GNE group presented, compared to GE group, increase in proteins that confer antimicrobial and acid resistant properties, such as cystatins, histatin and immunoglobulins. However, GNE group had a marked decrease in subunits of hemoglobin (α, ß and delta). Regarding bacterial proteins, for SS, 7 and 10 unique proteins were identified in the GE and GNE groups, respectively. They are related to protein synthesis and energy metabolism and interact with human proteins typically found in saliva and supramolecular complexes of the acquired pellicle. CONCLUSIONS: Our data indicate that the stimulation of the salivary flow increases acid resistant and antimicrobial proteins in saliva, which might protect against ETW. CLINICAL SIGNIFICANCE: This pioneer study showed important differences in the human and bacterial proteome of SS in patients with GERD with or without ETW.


Assuntos
Anti-Infecciosos , Refluxo Gastroesofágico , Atrito Dentário , Erosão Dentária , Desgaste dos Dentes , Humanos , Saliva/química , Espectrometria de Massas em Tandem , Proteômica , Proteoma , Proteínas de Bactérias
2.
Braz Oral Res ; 37: e085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729290

RESUMO

The objective of this study was to compare the protein profile of the acquired enamel pellicle (AEP) formed in vivo in patients with or without gastroesophageal reflux disease (GERD), and with or without erosive tooth wear (ETW). Twenty-four volunteers were divided into 3 groups: 1) GERD and ETW; 2) GERD without ETW; and 3) control (without GERD). The AEP formed 120 min after prophylaxis was collected from the lingual/palatal surfaces. The samples were subjected to mass spectrometry (nLC-ESI-MS/MS) and label-free quantification by Protein Lynx Global Service software. A total of 213 proteins were identified, or 119, 92 and 106 from each group, respectively. Group 2 showed a high number of phosphorylated and calcium-binding proteins. Twenty-three proteins were found in all the groups, including 14-3-3 protein zeta/delta and 1-phosphatidylinositol. Several intracellular proteins that join saliva after the exfoliation of oral mucosa cells might have the potential to bind hydroxyapatite, or participate in forming supramolecular aggregates that bind to precursor proteins in the AEP. Proteins might play a central role in protecting the dental surface against acid dissolution.


Assuntos
Refluxo Gastroesofágico , Desgaste dos Dentes , Humanos , Película Dentária , Espectrometria de Massas em Tandem , Durapatita
3.
J Appl Oral Sci ; 31: e20230108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493702

RESUMO

BACKGROUND: Polyphenols interact with salivary proteins and thus can improve the pellicle's erosion protective properties. This effect could be exploited to create rinsing solutions with polyphenols as active ingredients for erosion prevention. Different from the current gold standard for erosion protective rinsing solutions, these rinses would not rely on stannous ions. This would offer alternatives for patients with concerns regarding the composition of rinsing solutions and preferring bio-products. OBJECTIVE: To develop an erosion-preventive rinsing solution containing natural polyphenol-rich extracts. METHODOLOGY: Solutions were prepared with polyphenols from either grapeseed extract or cranberry extract, 500 ppm fluoride added, and additionally flavors and sweeteners. Controls were deionized water, 500 ppm fluoride solution, and the gold standard rinse in the field (Sn2+/F-). In total, 135 enamel specimens (n=15/group) were subjected to five cycles of salivary pellicle formation (30 min, 37°C), modification with the solutions (2 min, 25°C), further salivary pellicle formation (60 min, 37°C), and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), surface reflection intensity (rSRI), and amount of calcium release (CaR) were investigated. Data were analyzed with Kruskal-Wallis and Wilcoxon rank sum tests (α=0.05). RESULTS: The polyphenol solutions containing fluoride, as well as additional flavors, protected enamel better than fluoride alone, and similar to the Sn2+/F- solution, when investigating both rSMH and CaR. When measuring rSRI, Sn2+/F- showed the best protection, while the polyphenol solutions were similar to fluoride. CONCLUSION: For two of the three assessed parameters (rSMH and CaR), both developed polyphenol-rich rinsing solutions were able to protect enamel from erosion, improving/potentializing the effect of fluoride and matching the protection offered by the current gold standard rinsing solution.


Assuntos
Fluoretos , Erosão Dentária , Humanos , Erosão Dentária/prevenção & controle , Película Dentária , Esmalte Dentário , Cálcio , Polifenóis/farmacologia , Fluoreto de Sódio/farmacologia
4.
PLoS One ; 18(5): e0285931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200261

RESUMO

OBJECTIVES: To verify the protective effect of plant extracts associated with fluoride against dental erosion of dentine, in the presence and absence of a salivary pellicle. METHODS: Dentine specimens (n = 270) were randomly distributed into 9 experimental groups (n = 30/group): GT (green tea extract); BE (blueberry extract); GSE (grape seed extract); NaF (sodium fluoride); GT+NaF (green tea extract and NaF); BE+NaF (blueberry extract and NaF); GSE+NaF (grape seed extract and NaF); negative control (deionized water); and a positive control (commercialized mouthrinse containing stannous and fluoride). Each group was further divided into two subgroups (n = 15), according to the presence (P) or absence (NP) of salivary pellicle. The specimens were submitted to 10 cycles: 30 min incubation in human saliva (P) or only in humid chamber (NP), 2 min immersion in experimental solutions, 60 min of incubation in saliva (P) or not (NP), and 1 min erosive challenge. Dentine surface loss (dSL-10 and dSL-total), amount of degraded collagen (dColl) and total calcium release (CaR) were evaluated. Data were analyzed with Kruskal-Wallis, Dunn's and Mann-Whitney U tests (p>0.05). RESULTS: Overall, the negative control presented the highest values of dSL, dColl and CaR, and the plant extracts showed different degrees of dentine protection. For the subgroup NP, GSE showed the best protection of the extracts, and the presence of fluoride generally further improved the protection for all extracts. For the subgroup P, only BE provided protection, while the presence of fluoride had no impact on dSL and dColl, but lowered CaR. The protection of the positive control was more evident on CaR than on dColl. CONCLUSION: We can conclude that the plant extracts showed a protective effect against dentine erosion, regardless of the presence of salivary pellicle, and that the fluoride seems to improve their protection.


Assuntos
Extrato de Sementes de Uva , Erosão Dentária , Humanos , Película Dentária , Dentina , Fluoretos/farmacologia , Extrato de Sementes de Uva/farmacologia , Fluoreto de Sódio/farmacologia , Chá , Erosão Dentária/prevenção & controle
5.
Sci Rep ; 13(1): 8618, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244955

RESUMO

In contrast to pellicles formed in vivo, pellicles formed in vitro provide little to no erosion protection for enamel, possibly due to protein degradation from proteases during pellicle formation. With the objective to achieve a more similar effect as observed for in vivo pellicles, the effects of adding protease inhibitors (PI) to saliva in vitro, and/or exchanging saliva repeatedly during pellicle formation were investigated in a cyclic model of pellicle formation and erosion with human enamel specimens. We repeatedly assessed surface microhardness (SMH), measured initial and final surface reflection intensity (SRI), and determined calcium released during erosion. For all the parameters tested, we observed a clear positive effect on erosion protection when adding PI to saliva for pellicle formation: SMH remained harder, SRI remained higher, and less calcium was released. Additionally, exchanging saliva with fresh one during pellicle formation led to a protective effect, but not as strong as the addition of PI. We conclude that adding protease inhibitors to saliva in vitro for pellicle formation leads to an erosion protective effect, which was further increased by repeatedly exchanging the saliva. Whether the pellicle itself more closely resembles in vivo pellicles remains to be investigated.


Assuntos
Saliva , Erosão Dentária , Humanos , Erosão Dentária/prevenção & controle , Cálcio , Película Dentária , Cálcio da Dieta , Inibidores de Proteases
6.
Sci Rep ; 13(1): 7089, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130893

RESUMO

To investigate the effect of some polyphenol-rich plant extracts on the protection of dentine against demineralization, both acting on the dentine and on the salivary pellicle. Dentine specimens (n = 180) were randomly distributed into 6 experimental groups (n = 30/group): Control (deionized water), Açaí extract, Blueberry extract, Green tea extract, Grape seed extract, and Sn2+/F- (mouthrinse containing stannous and fluoride). Each group was further divided into two subgroups (n = 15), according to the site of action of the substance: on the dentine surface (D) or on the salivary pellicle (P). The specimens were submitted to 10 cycles: 30 min incubation in human saliva (P) or only in humid chamber (D), 2 min immersion in experimental substances, 60 min of incubation in saliva (P) or not (D), and 1 min erosive challenge. Dentine surface loss (DSL), amount of degraded collagen (dColl) and total calcium release were analyzed. Green tea, Grape seed and Sn2+/F- showed significant protection, with least DSL and dColl. The Sn2+/F- showed better protection on D than on P, whereas Green tea and Grape seed showed a dual mode of action, with good results on D, and even better on P. Sn2+/F- showed the lowest values of calcium release, not differing only from Grape seed. Sn2+/F- is more effective when acting directly on the dentine surface, while Green tea and Grape seed have a dual mode of action: with a positive effect on the dentine surface itself, but an improved efficacy in the presence of the salivary pellicle. We further elucidate the mechanism of action of different active ingredients on dentine erosion, where Sn2+/F- acts better on the dentine surface, but plant extracts have a dual mode of action, acting on the dentine itself as well as on the salivary pellicle, improving the protection against acid demineralization.


Assuntos
Erosão Dentária , Humanos , Cálcio/farmacologia , Película Dentária , Dentina , Extratos Vegetais/farmacologia , Chá , Erosão Dentária/prevenção & controle
7.
Arch Oral Biol ; 148: 105643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773559

RESUMO

OBJECTIVES: This study evaluated the protective impact of acquired enamel pellicle (AEP) engineering with statherin-derived peptide (StatpSpS), considering different AEP formation times. DESIGN: A total of 120 native human enamel specimens were divided into 2 main groups: 1) No AEP engineering and 2) AEP engineering with StatpSpS (pretreatment for 1 min; 37 °C, under agitation). Each group was further divided into 4 subgroups: No pellicle, or 1, 60-and-120 min AEP formation times (human saliva; 37 °C). The specimens were then subjected to an erosive challenge (1% citric acid; pH 3.6; 1 min; 25 °C). This procedure was repeated for 5 cycles. Relative surface reflection intensity (%SRI) was measured and scanning electron microscopy (SEM) of the enamel surface was done. RESULTS: All AEP engineering groups protected against initial dental erosion in comparison with No pellicle (p < 0.001), likewise all groups with AEP, independent of engineering or formation times (p 0.001). Furthermore, engineering with StatpSpS even without the presence of AEP protected the enamel when compared to the No engineering/No pellicle group (p < 0.0001). No difference was observed regarding the protection from the different AEP formation times (p > 0.05). Regarding the SEM analysis, in the "No AEP engineering & No AEP" group, a more severe effect of citric acid was observed, with more enamel prism heads and scratches on the surface when compared with the other groups. CONCLUSIONS: AEP provides almost instant protection at formation times even as short as 1 min, protecting the native enamel against erosion. Treatment with StatpSpS by itself provides similar protection as the AEP.


Assuntos
Erosão Dentária , Humanos , Película Dentária , Erosão Dentária/prevenção & controle , Esmalte Dentário , Peptídeos/farmacologia , Ácido Cítrico/farmacologia
8.
J. appl. oral sci ; 31: e20230108, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448553

RESUMO

Abstract Polyphenols interact with salivary proteins and thus can improve the pellicle's erosion protective properties. This effect could be exploited to create rinsing solutions with polyphenols as active ingredients for erosion prevention. Different from the current gold standard for erosion protective rinsing solutions, these rinses would not rely on stannous ions. This would offer alternatives for patients with concerns regarding the composition of rinsing solutions and preferring bio-products. Objective To develop an erosion-preventive rinsing solution containing natural polyphenol-rich extracts. Methodology Solutions were prepared with polyphenols from either grapeseed extract or cranberry extract, 500 ppm fluoride added, and additionally flavors and sweeteners. Controls were deionized water, 500 ppm fluoride solution, and the gold standard rinse in the field (Sn2+/F-). In total, 135 enamel specimens (n=15/group) were subjected to five cycles of salivary pellicle formation (30 min, 37°C), modification with the solutions (2 min, 25°C), further salivary pellicle formation (60 min, 37°C), and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), surface reflection intensity (rSRI), and amount of calcium release (CaR) were investigated. Data were analyzed with Kruskal-Wallis and Wilcoxon rank sum tests (α=0.05). Results The polyphenol solutions containing fluoride, as well as additional flavors, protected enamel better than fluoride alone, and similar to the Sn2+/F- solution, when investigating both rSMH and CaR. When measuring rSRI, Sn2+/F- showed the best protection, while the polyphenol solutions were similar to fluoride. Conclusion For two of the three assessed parameters (rSMH and CaR), both developed polyphenol-rich rinsing solutions were able to protect enamel from erosion, improving/potentializing the effect of fluoride and matching the protection offered by the current gold standard rinsing solution.

9.
Braz. oral res. (Online) ; 37: e085, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1513886

RESUMO

Abstract The objective of this study was to compare the protein profile of the acquired enamel pellicle (AEP) formed in vivo in patients with or without gastroesophageal reflux disease (GERD), and with or without erosive tooth wear (ETW). Twenty-four volunteers were divided into 3 groups: 1) GERD and ETW; 2) GERD without ETW; and 3) control (without GERD). The AEP formed 120 min after prophylaxis was collected from the lingual/palatal surfaces. The samples were subjected to mass spectrometry (nLC-ESI-MS/MS) and label-free quantification by Protein Lynx Global Service software. A total of 213 proteins were identified, or 119, 92 and 106 from each group, respectively. Group 2 showed a high number of phosphorylated and calcium-binding proteins. Twenty-three proteins were found in all the groups, including 14-3-3 protein zeta/delta and 1-phosphatidylinositol. Several intracellular proteins that join saliva after the exfoliation of oral mucosa cells might have the potential to bind hydroxyapatite, or participate in forming supramolecular aggregates that bind to precursor proteins in the AEP. Proteins might play a central role in protecting the dental surface against acid dissolution.

10.
PLoS One ; 17(11): e0277552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36383626

RESUMO

Polyphenol-rich solutions, such as plant extracts and teas, can modify the salivary pellicle and improve the protection against dental erosion. In this study, we further explored how these polyphenol-rich plant extracts solutions behave in the presence of fluoride. We distributed enamel specimens into 9 groups (n = 15): Control_No_F- (Deionized water); Control_F- (500 ppm F-), Grape_Seed_No_F- (Grape seed extract), Grape_Seed_F- (Grape seed extract + 500 ppm F-), Grapefruit_Seed_No_F- (Grapefruit seed extract), Grapefruit_Seed_F- (Grapefruit seed extract + 500 ppm F-), Blueberry_No_F- (Blueberry extract), Blueberry_F- (Blueberry extract + 500 ppm F-), and Sn2+/F-_Rinse (commercial solution containing 800 ppm Sn2+ and 500 ppm F-). The specimens were submitted to 5 cycles (1 cycle per day), and each cycle consisted of: salivary pellicle formation (human saliva, 30 min, 37°C), modification of the pellicle (2 min, 25°C), pellicle formation (60 min, 37°C), and an erosive challenge (1 min, citric acid). Between cycles, the specimens were kept in a humid chamber. Relative surface hardness (rSH), relative surface reflection intensity (rSRI) and calcium released to the acid were analysed, using general linear models, and Kruskal-Wallis with post-hoc Dunn's tests. We observed that the presence of fluoride in synergy with the extract solutions provided better protection than the groups containing extract or fluoride only. For rSH, we observed a significant main effect of extracts (F(4,117) = 9.20; p<0.001) and fluoride (F(1,117) = 511.55; p<0.001), with a significant interaction (F(3,117) = 6.71; p<0.001). Grape_Seed_F- showed the best protection, better than fluoride, and Sn2+/F-_Rinse. Calcium results also showed greater protection for the groups containing fluoride, whereas for rSRI, despite a significant interaction between extract and fluoride (F(3,117) = 226.05; p<0.001), the differences between the groups were not as clearly observed. We conclude that polyphenols from plant extracts, when combined with fluoride, improve the protective effect of salivary pellicles against enamel erosion.


Assuntos
Extrato de Sementes de Uva , Erosão Dentária , Humanos , Fluoretos/farmacologia , Erosão Dentária/prevenção & controle , Fluoreto de Sódio , Cálcio , Polifenóis , Extrato de Sementes de Uva/farmacologia , Esmalte Dentário
11.
Eur J Oral Sci ; 130(5): e12886, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839337

RESUMO

Salivary pellicle was modified with bioproducts and we assessed the change in tooth color and the protection of enamel to erosion. Human enamel specimens were assigned to one of three solutions: grape seed extract or black tea (bioproducts), or deionized water (negative control); after which one half the specimens underwent erosive challenges. The specimens underwent 15 cycles involving salivary pellicle formation (10 min, 37°C), incubation in solution (2 min, 25°C), subsequent pellicle formation (90 min, 37°C). Half of the specimens was kept in a humid chamber and the other half was submitted to erosion (2 min, 1% citric acid). After 15 such cycles, the pellicle was removed. Tooth color and the surface reflection intensity were assessed after every five cycles and after pellicle removal. For non-eroded specimens, the exposure to bioproducts promoted significantly greater color change than the deionized water, with increases in yellow appearance. After pellicle removal, the color was similar in all non-eroded specimens. The bioproducts increased the surface reflection intensity over cycles. For the erosion-exposed specimens, erosion itself resulted in color change. Black tea and deionized water resulted in increased yellow appearance. Exposure to the bioproducts resulted in higher relative surface reflection intensity values over time, but only grape seed extract resulted in higher relative surface reflection intensity value at the time of pellicle removal. The bioproducts caused transient staining effect, which was reduced after pellicle removal. For enamel submitted to erosion, grape seed extract resulted in less color change and better protection of enamel against erosion than black tea or water.


Assuntos
Extrato de Sementes de Uva , Erosão Dentária , Ácido Cítrico , Película Dentária , Extrato de Sementes de Uva/farmacologia , Humanos , Chá , Erosão Dentária/prevenção & controle , Água
12.
Sci Rep ; 12(1): 4153, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264778

RESUMO

Controversial results showing that deciduous teeth are more susceptible to erosion than permanent teeth might be related to study designs. We investigated how different conditions (pH: 3.0, 4.0, 5.0; acid agitation: gentle or vigorous; acid exposure times: 1-5 min) affect the susceptibility of both teeth to erosion. Enamel specimens (90 deciduous, 90 permanent) were distributed into groups (n = 15 permanent, n = 15 deciduous) according to acid pH (pH 5, 4 or 3) and agitation (gentle or vigorous) during erosive challenge. Both milder (less incubation time, gentle agitation, and higher pH) and more severe (longer incubation times, vigorous shaking, and lower pH) conditions were used. Demineralization was measured by relative surface microhardness (rSMH) and calcium released to the acid. Demineralization increased gradually for both teeth with increasing incubation time, agitation (gentle or vigorous), and with decreasing acid pH. The differences between deciduous and permanent teeth depended on the protocol design and assessment method. Under milder conditions, demineralization was better detectable with rSMH. Under more severe conditions, differences were more perceptible with calcium analyses. Differences exist in the susceptibility to erosion between deciduous and permanent teeth, but they are only distinguishable when the appropriate assessment method is used for the specific erosive condition.


Assuntos
Erosão Dentária , Ácidos , Cálcio , Dentição Permanente , Dureza , Humanos , Erosão Dentária/diagnóstico , Erosão Dentária/etiologia , Dente Decíduo
13.
Caries Res ; 56(2): 138-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168236

RESUMO

This study evaluated the combination of a sugarcane cystatin (CaneCPI-5) and sodium fluoride (NaF) in acquired pellicle engineering for the prevention of dental erosion in vitro. Seventy-five human enamel specimens were prepared and divided into 5 treatment groups (n = 15/group): Deionized water (Control); Elmex™ (SnCl2/NaF/AmF); 0.1 mg/mL CaneCPI-5; 500 ppm NaF; and CaneCPI-5+NaF (Combination). The specimens were individually treated (200 µL; 2 min; 37°C), then incubated in human saliva (200 µL; 1 h, at 37°C) for acquired pellicle formation. Afterward, the specimens were submitted to an erosive challenge (1% citric acid [CR], pH 3.6, 10 mL, 2 min, 25 °C). This sequence was conducted 5 times. Percentage of surface microhardness change (%SMC), relative surface reflection intensity (rSRI), and calcium released to the CR were measured and analyzed by one-way ANOVA followed by Tukey's test (p < 0.05). In general, all the treatments (SnCl2/NaF/AmF, CaneCPI-5, NaF, and Combination) significantly protected the enamel when compared the control group. Regarding %SMC and rSRI, the Combination was the most effective treatment, reducing the %SMC significantly (p < 0.01) when compared to all the other treatments, although this difference was not significant in the CR analysis. All treatments demonstrated a protective effect on enamel against dental erosion; however, the combination of CaneCPI-5 with NaF showed a greater protection.


Assuntos
Cistatinas , Saccharum , Erosão Dentária , Película Dentária , Fluoretos/farmacologia , Humanos , Fluoreto de Sódio/farmacologia , Erosão Dentária/prevenção & controle
14.
Oral Health Prev Dent ; 19(1): 301-309, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34057340

RESUMO

PURPOSE: Grape-seed extract (GSE) contains polyphenols that readily adhere to proteins and modify the acquired enamel pellicle (AEP). The first step in biofilm formation is bacterial adhesion to the AEP-covered enamel. The aim of this in vitro study was to test whether AEP modification with GSE, fluoride (F-), or their combination (GSE+F-) modulates bacterial adhesion, biofilm metabolism and composition, or cariogenic demineralisation of the enamel. MATERIALS AND METHODS: The study comprised 3 parts: 1) single-strain Streptococcus gordonii species, 2) a five-species biofilm model, or 3) biofilm (re-)formation using the five-species biofilm model after removal of initial biofilm with toothbrushing. Human whole-mouth stimulated saliva was used to form an AEP on human enamel specimens. The AEP was incubated in water (control), or modified with GSE, F-, or GSE+F-. Bacterial adhesion, biofilm diversity, metabolic activity, biofilm mass, and cariogenic demineralisation (surface hardness) of enamel were assessed after incubation in bacterial broths after 4 h or 22 h. Differences between groups were analysed with one-way ANOVA and post-hoc Bonferroni tests. RESULTS: GSE and GSE+F- statistically significantly decreased single-strain S. gordonii adhesion, but had no relevant influence when the five-species biofilm model was used. In the biofilm (re-)formation model, GSE reduced bacterial adhesion compared to GSE+F-, while F- caused less cariogenic demineralisation than was found in the control group. CONCLUSION: AEP modified with GSE retards S. gordonii adhesion, but it does not influence the formation, metabolism and composition of a cariogenic multi-species biofilm.


Assuntos
Extrato de Sementes de Uva , Vitis , Aderência Bacteriana , Biofilmes , Película Dentária , Extrato de Sementes de Uva/farmacologia , Humanos
15.
J Dent ; 107: 103612, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621617

RESUMO

OBJECTIVE: This study investigated the mechanism of action of different proteins/peptides (separately or in combination), focusing on how they act directly on the native enamel surface and on modifying the salivary pellicle. METHODS: A total of 170 native human enamel specimens were prepared and submitted to different treatments (2 h; 37 °C): with deionized water, CaneCPI-5, Hemoglobin, Statherin, or a combination of all three proteins/peptides. The groups were subdivided into treatment acting on the enamel surface (NoP - absence of salivary pellicle), and treatment modifying the salivary pellicle (P). Treatment was made (2 h; 37 °C) in all specimens, and later, for P, the specimens were incubated in human saliva (2 h; 37 °C). In both cases, the specimens were immersed in 1% citric acid (pH 3.6; 2 min; 25 °C). Calcium released from enamel (CaR) and its relative surface reflection intensity (%SRI) was measured after 5 cycles. Between-group differences were verified with two-way ANOVA, with "presence of pellicle" and "treatment" as factors (α = 0.05). RESULTS: The presence of pellicle provided better protection regarding %SRI (p < 0.01), but not regarding CaR (p = 0.201). In relation to treatment, when compared to the control group, all proteins/peptides provided significantly better protection (p < 0.01 for %SRI and Car). The combination of all three proteins/peptides demonstrated the best protective effect (p < 0.01 for %SRI). CONCLUSION: Depending on the protein or peptide, its erosion-inhibiting effect derives from their interaction with the enamel surface or from modifying the pellicle, so a combination of proteins and peptides provides the best protection. CLINICAL SIGNIFICANCE: The present study opens a new direction for a possible treatment with a combination of proteins for native human enamel, which can act directly on the enamel surface as well on the modification of the salivary pellicle, for the prevention of dental erosion.


Assuntos
Erosão Dentária , Esmalte Dentário , Película Dentária , Humanos , Peptídeos , Saliva , Erosão Dentária/prevenção & controle
16.
Caries Res ; 55(2): 108-113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556950

RESUMO

OBJECTIVE: As a preventive measure, tin (Sn2+)-containing products have a great potential to prevent enamel surface loss during erosive challenges, but adverse effects of high Sn2+ concentrations, such as astringent feeling of the teeth, are reported. Therefore, the main aim of this in vitro study was to develop a solution with lower Sn2+ concentrations that can still prevent dental erosion. METHODS: A total of 162 enamel specimens were prepared from human premolars, which were selected from a pool of extracted teeth. The specimens were randomly distributed to 9 groups (each group n = 18 enamel specimens) according to the different test treatments: a humid chamber (no treatment) as the negative control, the commercial Elmex® Erosion Protection mouth rinse as the positive control, and 7 solutions either with lower Sn2+ concentrations and/or containing flavoring. The experiment included 4 cycles, consisting of pellicle formation by incubating the specimens with 200 µL of human saliva at 37°C for 1 h, then placing the specimens in the treatment for 2 min (60 mL, 30°C, shaking at 70 rpm), and later submitting them to an erosive challenge for 1 min in citric acid (60 mL 1%, pH 3.6, 30°C). Surface hardness was measured with a Vickers diamond and surface reflection intensity was measured with a reflectometer. RESULTS: The control group performed significantly worse than all other solutions containing Sn2+. In general, there were no significant differences among the Sn2+-containing groups, and they presented similar protective effects on the enamel even when Sn2+ concentrations were reduced and flavorings were added. CONCLUSION: Sn2+ concentrations in mouth rinses may be lowered to 200 ppm without compromising the anti-erosive properties of the solution.


Assuntos
Antissépticos Bucais , Erosão Dentária , Esmalte Dentário , Humanos , Fluoreto de Sódio , Estanho , Erosão Dentária/prevenção & controle
17.
J Dent ; 105: 103567, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387569

RESUMO

OBJECTIVE: To investigate the modification of the salivary pellicle with different polyphenol-rich teas and natural extracts for the protection against dental erosion. METHODS: We performed two experiments: one with teas (Green tea, Black tea, Peppermint tea, Rosehip tea, negative control [NC]) and other with natural extracts (Grape seed, Grapefruit seed, Cranberry, Propolis, NC), where NC was deionized water. A total of 150 enamel specimens were used (n = 15/group). Both experiments followed the same design, consisting of 5 cycles of: salivary pellicle formation (30 min, 37 °C), modification with the solutions (30 min, 25 °C), further salivary pellicle formation (60 min, 37 °C) and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), relative surface reflection intensity (rSRI) and amount of calcium release (CaR) were evaluated. Data were analysed with Kruskal-Wallis and Wilcoxon rank sum tests with Bonferroni correction (α = 0.05). RESULTS: Regarding teas, Black and Green teas showed the best protection against dental erosion, presenting higher rSMH and lower CaR than NC. Peppermint tea was not different to NC and Rosehip tea caused erosion, showing the highest CaR and greatest loss of SMH and SRI. Regarding natural extracts, Grape seed and Grapefruit seed extracts presented the best protective effect, with significantly higher rSMH and lower CaR. Cranberry caused significantly more demineralization; and Propolis did not differ from NC. CONCLUSION: Green tea, Black tea, Grape seed extract and Grapefruit seed extract were able to modify the salivary pellicle and improve its protective effect against enamel erosion, but Rosehip tea and Cranberry extract caused erosion. CLINICAL RELEVANCE: Some some bio-products, such as teas and natural extracts, improve the protective effect of the salivary pellicle against enamel erosion. More studies should be performed in order to test the viability of their use as active ingredients for oral care products.


Assuntos
Erosão Dentária , Esmalte Dentário , Película Dentária , Humanos , Extratos Vegetais/uso terapêutico , Polifenóis , Erosão Dentária/prevenção & controle
18.
Eur J Oral Sci ; 129(1): e12749, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33381873

RESUMO

This study investigated the potential of red wine in modulating dental erosion kinetics in the presence or absence of salivary pellicle. Polished human enamel specimens were used in two conditions; presence or absence of acquired enamel pellicle; and subdivided according to exposure: red wine, orange juice, apple juice, or citric acid. The specimens were incubated in clarified whole human saliva (presence of acquired enamel pellicle) or in a humid chamber (absence of acquired enamel pellicle) for 2 h at 37°C, then in the test substances for 1 min, at 25°C, under shaking. This was repeated four times. Surface hardness was measured initially and after each cycle and surface reflection intensity was measured initially and after all cycles. In the presence of acquired enamel pellicle, red wine caused the least surface hardness loss, followed by orange juice, apple juice, and citric acid. Statistically significantly less surface reflection intensity loss was observed for red wine and orange juice than for apple juice and citric acid. In the absence of acquired enamel pellicle, red wine and orange juice caused less surface hardness loss than apple juice and citric acid. Orange juice showed the least surface reflection intensity loss, followed by red wine, citric acid, and apple juice. The polyphenol composition of these drinks can notably modulate the erosion kinetics.


Assuntos
Erosão Dentária , Vinho , Esmalte Dentário , Película Dentária , Humanos , Cinética , Saliva
19.
Eur J Oral Sci ; 128(6): 487-494, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200856

RESUMO

This study compared the protein profile of the acquired enamel pellicle (AEP) formed under three conditions: in vitro, in situ, and in vivo. Nine volunteers participated in all procedures. In the in vitro condition, the volunteers donated saliva, in which specimens were incubated to form the AEP. In the in situ condition, the volunteers used an oral device containing specimens where the AEP was formed. In the in vivo condition, the AEP was collected from the volunteers own teeth. All AEPs were formed for 120 min, collected and processed by mass spectrometry. Overall, a total of 321 proteins were identified, among which 37 proteins are commonly considered typical in the AEP. For each of the in vitro, in situ, and in vivo conditions, respectively, 66, 174, and 170 proteins were identified. For the in vitro condition, 17 pellicle-typical proteins were not identified. Furthermore, several proteins with important functions within the AEP presented differences in expression in the three conditions. The qualitative profile of the proteins, especially the typical ones, is different in the in vitro condition. In addition, there are important quantitative differences that may interfere when attempting to extrapolate in vitro results to an in situ and in vivo condition.


Assuntos
Proteômica , Saliva , Película Dentária , Humanos , Proteínas
20.
Caries Res ; 54(5-6): 466-474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33171464

RESUMO

OBJECTIVE: Saliva is the most important biological factor to protect against erosive tooth wear (ETW). Gastroesophageal reflux disease (GERD) patients have an increased risk of ETW due to the frequent presence of intrinsic acids in the oral cavity. Remarkably, not all GERD patients suffer from ETW, which might be due to differences in the composition of the saliva. METHODS: This study compared the proteomic profile of saliva in patients (1) with GERD and ETW (basic erosive wear examination, BEWE, score ≥9; GE group) and (2) with GERD without ETW (BEWE = 0; GNE group) using shotgun label-free quantitative proteomic analysis nLC-ESI-MS/MS. The ability of hemoglobin (Hb) to protect against initial enamel erosion caused by a daily 10-s immersion of enamel specimens in 0.01 M HCl (pH 2.3) for 3 days was evaluated in vitro for proof of concept. Surface hardness change was used as response variable. RESULTS: The differential expression of Hb subunits was significantly increased in the GNE group versus the GE group, in particular the Hb α-subunit that showed a >22-fold increase. Expressions of serum albumin (4.5-fold) and isoforms of cytoskeletal keratin type II (>3-fold) were also increased in the GNE group. Proteinase inhibitors, such as α1-antitrypsin and α2-macroglobulin, were only identified in the GNE group. In vitro, Hb (1.0 and 4.0 mg/mL) significantly reduced initial enamel erosion compared to a negative control after 3 days. CONCLUSIONS: Our results indicate that many proteins, with special emphasis on Hb, may be involved in the resistance of GERD patients to the occurrence of ETW. These proteins may be candidates for inclusion in dental products to protect against ETW.


Assuntos
Refluxo Gastroesofágico , Erosão Dentária , Desgaste dos Dentes , Refluxo Gastroesofágico/complicações , Refluxo Gastroesofágico/prevenção & controle , Hemoglobinas , Humanos , Prevalência , Proteômica , Espectrometria de Massas em Tandem , Erosão Dentária/etiologia , Erosão Dentária/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...