Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 227: 119-33, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23036621

RESUMO

Nociceptive plasticity and central sensitization within the spinal cord depend on neurobiological mechanisms implicated in learning and memory in higher neural systems, suggesting that the factors that impact brain-mediated learning and memory could modulate how stimulation affects spinal systems. One such factor is temporal regularity (predictability). The present paper shows that intermittent hindleg shock has opposing effects in spinally transected rats depending upon whether shock is presented in a regular or irregular (variable) manner. Variable intermittent legshock (900 shocks) enhanced mechanical reactivity to von Frey stimuli (hyperreactivity), whereas 900 fixed-spaced legshocks produced hyporeactivity. The impact of fixed-spaced shock depended upon the duration of exposure; a brief exposure (36 shocks) induced hyperreactivity whereas an extended exposure (900 shocks) produced hyporeactivity. The enhanced reactivity observed after variable shock was most evident 60-180 min after treatment. Fixed and variable intermittent stimulation applied to the sciatic nerve, or the tail, yielded a similar pattern of results. Stimulation had no effect on thermal reactivity. Exposure to fixed-spaced shock, but not variable shock, attenuated the enhanced mechanical reactivity (EMR) produced by treatment with hindpaw capsaicin. The effect of fixed-spaced stimulation lasted 24h. Treatment with fixed-spaced shock also attenuated the maintenance of capsaicin-induced EMR. The results show that variable intermittent shock enhances mechanical reactivity, while an extended exposure to fixed-spaced shock has the opposite effect on mechanical reactivity and attenuates capsaicin-induced EMR.


Assuntos
Capsaicina/farmacologia , Fármacos do Sistema Sensorial/farmacologia , Traumatismos da Medula Espinal/fisiopatologia , Tato/efeitos dos fármacos , Tato/fisiologia , Análise de Variância , Animais , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Eletrochoque/efeitos adversos , Hiperalgesia/fisiopatologia , Masculino , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
Neuroscience ; 200: 74-90, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22056599

RESUMO

Brain-derived neurotrophic factor (BDNF) has been characterized as a potent modulator of neural plasticity in both the brain and spinal cord. The present experiments use an in vivo model system to demonstrate that training with controllable stimulation increases spinal BDNF expression and engages a BDNF-dependent process that promotes adaptive plasticity. Spinally transected rats administered legshock whenever one hind limb is extended (controllable stimulation) exhibit a progressive increase in flexion duration. This simple form of response-outcome (instrumental) learning is not observed when shock is given independent of leg position (uncontrollable stimulation). Uncontrollable electrical stimulation also induces a lasting effect that impairs learning for up to 48 h. Training with controllable shock can counter the adverse consequences of uncontrollable stimulation, to both prevent and reverse the learning deficit. Here it is shown that the protective and restorative effect of instrumental training depends on BDNF. Cellular assays showed that controllable stimulation increased BDNF mRNA expression and protein within the lumbar spinal cord. These changes were associated with an increase in the BDNF receptor TrkB protein within the dorsal horn. Evidence is then presented that these changes play a functional role in vivo. Application of a BDNF inhibitor (TrkB-IgG) blocked the protective effect of instrumental training. Direct (intrathecal) application of BDNF substituted for instrumental training to block both the induction and expression of the learning deficit. Uncontrollable stimulation also induced an increase in mechanical reactivity (allodynia), and this too was prevented by BDNF. TrkB-IgG blocked the restorative effect of instrumental training and intrathecal BDNF substituted for training to reverse the deficit. Taken together, these findings outline a critical role for BDNF in mediating the beneficial effects of controllable stimulation on spinal plasticity.


Assuntos
Adaptação Fisiológica/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Operante/fisiologia , Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Medula Espinal/metabolismo , Análise de Variância , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/genética , Estimulação Elétrica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Imunoglobulina G/farmacologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Estimulação Física , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/imunologia , Receptor trkB/metabolismo , Fatores de Tempo
3.
Neuroscience ; 155(4): 1030-47, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18674601

RESUMO

Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hind limb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 h. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g. windup, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 h (experiments 1-2) and was dependent on C-fiber activation (experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (experiments 3-6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (experiments 9-10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect.


Assuntos
Condicionamento Operante/fisiologia , Estimulação Elétrica , Nervo Isquiático/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Análise de Variância , Animais , Comportamento Animal/efeitos da radiação , Relação Dose-Resposta à Radiação , Vias Eferentes/fisiologia , Estimulação Elétrica/métodos , Membro Posterior/fisiopatologia , Membro Posterior/efeitos da radiação , Deficiências da Aprendizagem/etiologia , Masculino , Psicofísica , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos da radiação , Limiar Sensorial/efeitos da radiação , Fatores de Tempo
4.
Neuroscience ; 148(4): 893-906, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17719180

RESUMO

We have previously shown that the spinal cord is capable of learning a sensorimotor task in the absence of supraspinal input. Given the action of brain-derived neurotrophic factor (BDNF) on hippocampal learning, the current studies examined the role of BDNF in spinal learning. BDNF is a strong synaptic facilitator and, in association with other molecular signals (e.g. cAMP-response element binding protein (CREB), calcium/calmodulin activated protein kinase II (CaMKII) and synapsin I), important for learning. Spinally transected rats given shock to one hind leg when the leg extended beyond a selected threshold exhibited a progressive increase in flexion duration that minimized shock exposure, a simple form of instrumental learning. Instrumental learning resulted in elevated mRNA levels of BDNF, CaMKII, CREB, and synapsin I in the lumbar spinal cord region. The increases in BDNF, CREB, and CaMKII were proportional to the learning performance. Prior work has shown that instrumental training facilitates learning when subjects are tested on the contralateral leg with a higher response criterion. Pretreatment with the BDNF inhibitor TrkB-IgG blocked this facilitatory effect, as did the CaMKII inhibitor AIP. Intrathecal administration of BDNF facilitated learning when subjects were tested with a high response criterion. The findings indicate that instrumental training enables learning and elevates BDNF mRNA levels within the lumbar spinal cord. BDNF is both necessary, and sufficient, to produce the enabling effect.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Medula Espinal/metabolismo , Ensino , Regulação para Cima/fisiologia , Análise de Variância , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibição Psicológica , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação , Sinapsinas/genética , Sinapsinas/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA