Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3670-3677, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483128

RESUMO

Functionalization of metallic surfaces by molecular monolayers is a key process in fields such as nanophotonics or biotechnology. To strongly enhance light-matter interaction in such monolayers, nanoparticle-on-a-mirror (NPoM) cavities can be formed by placing metal nanoparticles on such chemically functionalized metallic monolayers. In this work, we present a novel functionalization process of gold surfaces using 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules, which can be used for upconversion from THz to visible frequencies. The synthesized surfaces and NPoM cavities are characterized by Raman spectroscopy, atomic force microscopy (AFM), and advancing-receding contact angle measurements. Moreover, we show that NPoM cavities can be efficiently integrated on a silicon-based photonic chip performing pump injection and Raman-signal extraction via silicon nitride waveguides. Our results open the way for the use of 5-A-2MBI monolayers in different applications, showing that NPoM cavities can be effectively integrated with photonic waveguides, enabling on-chip enhanced Raman spectroscopy or detection of infrared and THz radiation.

2.
Nat Commun ; 15(1): 1928, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431651

RESUMO

The molecule-metal interface is of paramount importance for many devices and processes, and directly involved in photocatalysis, molecular electronics, nanophotonics, and molecular (bio-)sensing. Here the photostability of this interface is shown to be sensitive even to room light levels for specific molecules and metals. Optical spectroscopy is used to track photoinduced migration of gold atoms when functionalised with different thiolated molecules that form uniform monolayers on Au. Nucleation and growth of characteristic surface metal nanostructures is observed from the light-driven adatoms. By watching the spectral shifts of optical modes from nanoparticles used to precoat these surfaces, we identify processes involved in the photo-migration mechanism and the chemical groups that facilitate it. This photosensitivity of the molecule-metal interface highlights the significance of optically induced surface reconstruction. In some catalytic contexts this can enhance activity, especially utilising atomically dispersed gold. Conversely, in electronic device applications such reconstructions introduce problematic aging effects.

3.
Nat Commun ; 15(1): 2022, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448412

RESUMO

Surface-enhanced Raman spectroscopy (SERS) harnesses the confinement of light into metallic nanoscale hotspots to achieve highly sensitive label-free molecular detection that can be applied for a broad range of sensing applications. However, challenges related to irreversible analyte binding, substrate reproducibility, fouling, and degradation hinder its widespread adoption. Here we show how in-situ electrochemical regeneration can rapidly and precisely reform the nanogap hotspots to enable the continuous reuse of gold nanoparticle monolayers for SERS. Applying an oxidising potential of +1.5 V (vs Ag/AgCl) for 10 s strips a broad range of adsorbates from the nanogaps and forms a metastable oxide layer of few-monolayer thickness. Subsequent application of a reducing potential of -0.80 V for 5 s in the presence of a nanogap-stabilising molecular scaffold, cucurbit[5]uril, reproducibly regenerates the optimal plasmonic properties with SERS enhancement factors ≈106. The regeneration of the nanogap hotspots allows these SERS substrates to be reused over multiple cycles, demonstrating ≈5% relative standard deviation over at least 30 cycles of analyte detection and regeneration. Such continuous and reliable SERS-based flow analysis accesses diverse applications from environmental monitoring to medical diagnostics.

4.
Nano Lett ; 24(1): 238-244, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164905

RESUMO

The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules. In simulations we demonstrate the strong coupling between the second excited plasmonic cavity mode and resonant emitters. However, we also show that other detuned modes simultaneously couple efficiently to the molecular transitions, creating unusual cascades of mode spectral shifts and polariton formation. This is possible due to the relatively large plasmonic particle size resulting in reduced mode splittings. The results open significant potential for device applications utilizing active control of strong coupling.

5.
ACS Appl Mater Interfaces ; 16(5): 6485-6494, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266382

RESUMO

Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 µm lateral resolution. We make fully printed 1000 × 5000 × 12 µm3 ultrathin ECAs, each of which comprises a Nafion electrolyte layer sandwiched between two poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrode layers. The ECAs actuate due to the electric-field-driven migration of hydrated protons. Due to the thinness that gives rise to a low proton transport length and a low flexural rigidity, the printed ECAs can operate under low voltages (∼0.5 V) and have a relatively fast response (∼seconds). We print all the components of an actuator that consists of two individually controlled submillimeter segments and demonstrate its multimodal actuation. The convenience, versatility, rapidity, and low cost of our microfabrication strategy promise future developments in integrating arrays of intricately patterned individually controlled soft microactuators on compact stretchable electronic circuits.

6.
ACS Nano ; 18(4): 3323-3330, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215048

RESUMO

Integrating cavity-enhanced colloidal quantum dots (QDs) into photonic chip devices would be transformative for advancing room-temperature optoelectronic and quantum photonic technologies. However, issues with efficiency, stability, and cost remain formidable challenges to reach the single antenna limit. Here, we present a bottom-up approach that delivers single QD-plasmonic nanoantennas with electrical addressability. These QD nanojunctions exhibit robust photoresponse characteristics, with plasmonically enhanced photocurrent spectra matching the QD solution absorption. We demonstrate electroluminescence from individual plasmonic nanoantennas, extending the device lifetime beyond 40 min by utilizing a 3 nm electron-blocking polymer layer. In addition, we reveal a giant voltage-dependent redshift of up to 62 meV due to the quantum-confined Stark effect and determine the exciton polarizability of the CdSe QD monolayer to be 4 × 10-5 meV/(kV/cm)2. These developments provide a foundation for accessing scalable quantum light sources and high-speed, tunable optoelectronic systems operating under ambient conditions.

7.
Small ; 20(9): e2305034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867212

RESUMO

Light-responsive microactuators composed of vertically aligned carbon nanotube (CNT) forests mixed with poly(N-isopropylacrylamide) (PNIPAM) hydrogel composites are studied. The benefit of this composite is that CNTs act as a black absorber to efficiently capture radiative heating and trigger PNIPAM contraction. In addition, CNT forests can be patterned accurately using lithography to span structures ranging from a few micrometers to several millimeters in size, and these CNT-PNIPAM composites can achieve response times as fast as 15 ms. The kinetics of these microactuators are investigated through detailed analysis of high-speed videos. These are compared to a theoretical model for the deswelling dynamics, which combines thermal convection and polymer diffusion, and shows that polymer diffusion is the rate-limiting factor in this system. Applications of such CNT/hydrogel actuators as microswimmers are discussed, with light-actuating micro-jellyfish designs exemplified, and >1500 cycles demonstrated.

8.
Light Sci Appl ; 13(1): 3, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161207

RESUMO

Conjugated polymers are promising material candidates for many future applications in flexible displays, organic circuits, and sensors. Their performance is strongly affected by their structural conformation including both electrical and optical anisotropy. Particularly for thin layers or close to crucial interfaces, there are few methods to track their organization and functional behaviors. Here we present a platform based on plasmonic nanogaps that can assess the chemical structure and orientation of conjugated polymers down to sub-10 nm thickness using light. We focus on a representative conjugated polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), of varying thickness (2-20 nm) while it undergoes redox in situ. This allows dynamic switching of the plasmonic gap spacer through a metal-insulator transition. Both dark-field (DF) and surface-enhanced Raman scattering (SERS) spectra track the optical anisotropy and orientation of polymer chains close to a metallic interface. Moreover, we demonstrate how this influences both optical and redox switching for nanothick PEDOT devices.

9.
Photoacoustics ; 34: 100566, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38027527

RESUMO

We introduce a spectral analysis method in picosecond ultrasonics to derive strain pulse shapes in a opaque sample with known optical properties. The method makes use of both the amplitude and phase of optical transient relative reflectance changes obtained, for example, by interferometry. We demonstrate this method through numerical simulation and by analysis of experimental results for a chromium film.

10.
Nano Lett ; 23(23): 10696-10702, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029409

RESUMO

We show using time-dependent density functional theory (TDDFT) that light can be confined into slot waveguide modes residing between individual atomic layers of coinage metals, such as gold. As the top atomic monolayer lifts a few Å off the underlying bulk Au (111), ab initio electronic structure calculations show that for gaps >1.5 Å, visible light squeezes inside the empty slot underneath, giving optical field distributions 2 Å thick, less than the atomic diameter. Paradoxically classical electromagnetic models are also able to reproduce the resulting dispersion for these subatomic slot modes, where light reaches in-plane wavevectors ∼2 nm-1 and slows to <10-2c. We explain the success of these classical dispersion models for gaps ≥1.5 Å due to a quantum-well state forming in the lifted monolayer in the vicinity of the Fermi level. This extreme trapping of light may explain transient "flare" emission from plasmonic cavities where Raman scattering of metal electrons is greatly enhanced when subatomic slot confinement occurs. Such atomic restructuring of Au under illumination is relevant to many fields, from photocatalysis and molecular electronics to plasmonics and quantum optics.

11.
Phys Rev Lett ; 131(12): 126902, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802963

RESUMO

Strong coupling of molecular vibrations with light creates polariton states, enabling control over many optical and chemical properties. However, the near-field signatures of strong coupling are difficult to map as most cavities are closed systems. Surface-enhanced Raman microscopy of open metallic gratings under vibrational strong coupling enables the observation of spatial polariton localization in the grating near field, without the need for scanning probe microscopies. The lower polariton is localized at the grating slots, displays a strongly asymmetric line shape, and gives greater plasmon-vibration coupling strength than measured in the far field. Within these slots, the local field strength pushes the system into the ultrastrong coupling regime. Models of strong coupling which explicitly include the spatial distribution of emitters can account for these effects. Such gratings enable exploration of the rich physics of polaritons, its impact on polariton chemistry under flow conditions, and the interplay between near- and far-field properties through vibrational polariton-enhanced Raman scattering.

13.
Nat Commun ; 14(1): 5726, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714855

RESUMO

Anti-Stokes photoluminescence (PL) is light emission at a higher photon energy than the excitation, with applications in optical cooling, bioimaging, lasing, and quantum optics. Here, we show how plasmonic nano-cavities activate anti-Stokes PL in WSe2 monolayers through resonant excitation of a dark exciton at room temperature. The optical near-fields of the plasmonic cavities excite the out-of-plane transition dipole of the dark exciton, leading to light emission from the bright exciton at higher energy. Through statistical measurements on hundreds of plasmonic cavities, we show that coupling to the dark exciton leads to a near hundred-fold enhancement of the upconverted PL intensity. This is further corroborated by experiments in which the laser excitation wavelength is tuned across the dark exciton. We show that a precise nanoparticle geometry is key for a consistent enhancement, with decahedral nanoparticle shapes providing an efficient PL upconversion. Finally, we demonstrate a selective and reversible switching of the upconverted PL via electrochemical gating. Our work introduces the dark exciton as an excitation channel for anti-Stokes PL in WSe2 and paves the way for large-area substrates providing nanoscale optical cooling, anti-Stokes lasing, and radiative engineering of excitons.

14.
Small ; 19(48): e2302531, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605460

RESUMO

Sensing of neurotransmitters (NTs) down to nm concentrations is demonstrated by utilizing self-assembled monolayers of plasmonic 60 nm Au nanoparticles in close-packed arrays immobilized onto glass substrates. Multiplicative surface-enhanced Raman spectroscopy enhancements are achieved by integrating Fe(III) sensitizers into the precisely-defined <1 nm nanogaps, to target dopamine (DA) sensing. The transparent glass substrates allow for efficient access from both sides of the monolayer aggregate films by fluid and light, allowing repeated sensing in different analytes. Repeated reusability after analyte sensing is shown through oxygen plasma cleaning protocols, which restore pristine conditions for the nanogaps. Examining binding competition in multiplexed sensing of two catecholamine NTs, DA and epinephrine, reveals their bidentate binding and their interactions. These systems are promising for widespread microfluidic integration enabling a wide range of continuous biofluid monitoring for applications in precision health.

15.
J Phys Chem Lett ; 14(34): 7603-7610, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37594383

RESUMO

Atomic-scale features, such as step edges and adatoms, play key roles in metal-molecule interactions and are critically important in heterogeneous catalysis, molecular electronics, and sensing applications. However, the small size and often transient nature of atomic-scale structures make studying such interactions challenging. Here, by combining single-molecule surface-enhanced Raman spectroscopy with machine learning, spectra are extracted of perturbed molecules, revealing the formation dynamics of adatoms in gold and palladium metal surfaces. This provides unique insight into atomic-scale processes, allowing us to resolve where such metallic protrusions form and how they interact with nearby molecules. Our technique paves the way to tailor metal-molecule interactions on an atomic level and assists in rational heterogeneous catalyst design.

16.
ACS Sens ; 8(7): 2879-2888, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37411019

RESUMO

We demonstrate the reliable creation of multiple layers of Au nanoparticles in random close-packed arrays with sub-nm gaps as a sensitive surface-enhanced Raman scattering substrate. Using oxygen plasma etching, all the original molecules creating the nanogaps can be removed and replaced with scaffolding ligands that deliver extremely consistent gap sizes below 1 nm. This allows precision tailoring of the chemical environment of the nanogaps which is crucial for practical Raman sensing applications. Because the resulting aggregate layers are easily accessible from opposite sides by fluids and by light, high-performance fluidic sensing cells are enabled. The ability to cyclically clean off analytes and reuse these films is shown, exemplified by sensing of toluene, volatile organic compounds, and paracetamol, among others.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Análise Espectral Raman/métodos
17.
Nat Commun ; 14(1): 3291, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280203

RESUMO

Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics. Here we show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling so that intense laser illumination drastically softens the molecular bonds. This optomechanical pumping regime produces strong distortions of the Raman vibrational spectrum related to giant vibrational frequency shifts from an optical spring effect which is hundred-fold larger than in traditional cavities. The theoretical simulations accounting for the multimodal nanocavity response and near-field-induced collective phonon interactions are consistent with the experimentally-observed non-linear behavior exhibited in the Raman spectra of nanoparticle-on-mirror constructs illuminated by ultrafast laser pulses. Further, we show indications that plasmonic picocavities allow us to access the optical spring effect in single molecules with continuous illumination. Driving the collective phonon in the nanocavity paves the way to control reversible bond softening, as well as irreversible chemistry.

18.
Adv Mater ; 35(31): e2302028, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277121

RESUMO

Dynamically tunable reflective structural colors are attractive for reflective displays (electronic paper). However, it is challenging to tune a thin layer of structural color across the full red-green-blue (RGB) basis set of colors at video rates and with long-term stability. In this work, this is achieved through a hybrid cavity built from metal-insulator-metal (MIM) "nanocaves" and an electrochromic polymer (PProDOTMe2 ). The reflective colors are modulated by electrochemically doping/dedoping the polymer. Compared with traditional subpixel-based systems, this hybrid structure provides high reflectivity (>40%) due to its "monopixel" nature and switches at video rates. The polymer bistability helps deliver ultralow power consumption (≈2.5 mW cm-2 ) for video display applications and negligible consumption (≈3 µW cm-2 ) for static images, compatible with fully photovoltaic powering. In addition, the color uniformity of the hybrid material is excellent (over cm-2 ) and the scalable fabrication enables large-area production.

19.
Nano Lett ; 23(13): 5959-5966, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364270

RESUMO

Developing highly enhanced plasmonic nanocavities allows direct observation of light-matter interactions at the nanoscale. With DNA origami, the ability to precisely nanoposition single-quantum emitters in ultranarrow plasmonic gaps enables detailed study of their modified light emission. By developing protocols for creating nanoparticle-on-mirror constructs in which DNA nanostructures act as reliable and customizable spacers for nanoparticle binding, we reveal that the simple picture of Purcell-enhanced molecular dye emission is misleading. Instead, we show that the enhanced dipolar dye polarizability greatly amplifies optical forces acting on the facet Au atoms, leading to their rapid destabilization. Using different dyes, we find that emission spectra are dominated by inelastic (Raman) scattering from molecules and metals, instead of fluorescence, with molecular bleaching also not evident despite the large structural rearrangements. This implies that the competition between recombination pathways demands a rethink of routes to quantum optics using plasmonics.

20.
ACS Nanosci Au ; 3(2): 161-171, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096231

RESUMO

A liquid-based surface-enhanced Raman spectroscopy assay termed PSALM is developed for the selective sensing of neurotransmitters (NTs) with a limit of detection below the physiological range of NT concentrations in urine. This assay is formed by quick and simple nanoparticle (NP) "mix-and-measure" protocols, in which FeIII bridges NTs and gold NPs inside the sensing hotspots. Detection limits of NTs from PreNP PSALM are significantly lower than those of PostNP PSALM, when urine is pretreated by affinity separation. Optimized PSALM enables the long-term monitoring of NT variation in urine in conventional settings for the first time, allowing the development of NTs as predictive or correlative biomarkers for clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...