Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5691, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171185

RESUMO

Using biodegradable instead of conventional plastics in agricultural applications promises to help overcome plastic pollution of agricultural soils. However, analytical limitations impede our understanding of plastic biodegradation in soils. Utilizing stable carbon isotope (13C-)labelled poly(butylene succinate) (PBS), a synthetic polyester, we herein present an analytical approach to continuously quantify PBS mineralization to 13CO2 during soil incubations and, thereafter, to determine non-mineralized PBS-derived 13C remaining in the soil. We demonstrate extensive PBS mineralization (65 % of added 13C) and a closed mass balance on PBS-13C over 425 days of incubation. Extraction of residual PBS from soils combined with kinetic modeling of the biodegradation data and results from monomer (i.e., butanediol and succinate) mineralization experiments suggest that PBS hydrolytic breakdown controlled the overall PBS biodegradation rate. Beyond PBS biodegradation in soil, the presented methodology is broadly applicable to investigate biodegradation of other biodegradable polymers in various receiving environments.


Assuntos
Carbono , Solo , Biodegradação Ambiental , Butileno Glicóis/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Marcação por Isótopo , Plásticos , Poliésteres/metabolismo , Polímeros/metabolismo , Succinatos
2.
Sci Adv ; 4(7): eaas9024, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30050987

RESUMO

Plastic materials are widely used in agricultural applications to achieve food security for the growing world population. The use of biodegradable instead of nonbiodegradable polymers in single-use agricultural applications, including plastic mulching, promises to reduce plastic accumulation in the environment. We present a novel approach that allows tracking of carbon from biodegradable polymers into CO2 and microbial biomass. The approach is based on 13C-labeled polymers and on isotope-specific analytical methods, including nanoscale secondary ion mass spectrometry (NanoSIMS). Our results unequivocally demonstrate the biodegradability of poly(butylene adipate-co-terephthalate) (PBAT), an important polyester used in agriculture, in soil. Carbon from each monomer unit of PBAT was used by soil microorganisms, including filamentous fungi, to gain energy and to form biomass. This work advances both our conceptual understanding of polymer biodegradation and the methodological capabilities to assess this process in natural and engineered environments.


Assuntos
Biodegradação Ambiental , Biomassa , Polímeros/metabolismo , Microbiologia do Solo , Agricultura , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono/química , Fungos/metabolismo , Lipase/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Espectrometria de Massa de Íon Secundário
3.
Environ Sci Technol ; 47(12): 6545-53, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23663092

RESUMO

Polyfluorinated arenes are increasingly used in industry and can be considered emerging contaminants. Environmentally applicable degradation methods leading to full defluorination are not reported in the literature. In this study, it is demonstrated that the heterogeneous catalyst Rh/Al2O3 is capable of fully defluorinating and hydrogenating polyfluorinated benzenes in water under mild conditions (1 atm H2, ambient temperature) with degradation half-lives between 11 and 42 min. Analysis of the degradation rates of the 12 fluorobenzene congeners showed two trends: slower degradation with increasing number of fluorine substituents and increasing degradation rates with increasing number of adjacent fluorine substituents. The observed fluorinated intermediates indicated that adjacent fluorine substituents are preferably removed. Besides defluorination and hydrogenation, the scope of the catalyst includes dehalogenation of polychlorinated benzenes, bromobenzene, iodobenzene, and selected mixed dihalobenzenes. Polychlorobenzene degradation rates, like their fluorinated counterparts, decreased with increasing halogen substitution. In contrast to the polyfluorobenzenes though, removal of chlorine substituents was sterically driven. All monohalobenzenes were degraded at similar rates; however, when two carbon-halogen bonds were in direct intramolecular competition, the weaker bond was broken first. Differences in sorption affinities of the substrates are suggested to play a major role in determining the relative rates of transformation of halobenzenes by Rh/Al2O3 and H2.


Assuntos
Benzeno/química , Fluorbenzenos/química , Catálise , Cloro/química , Flúor/química , Halogenação , Halogênios/química , Hidrogenação
4.
Environ Sci Technol ; 46(18): 10199-205, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22871102

RESUMO

Fluorinated organic compounds are increasingly used in many applications, and their release to the environment is expected. It is therefore important to find suitable methods for degradation of fluorinated compounds under environmentally relevant conditions. In this study, a simple heterogeneous rhodium-based catalytic system (Rh/Al(2)O(3) and H(2)) for hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions (1 atm of H(2), ambient temperature) was developed and the underlying reaction mechanism was investigated. Fluorobenzene degraded rapidly (t(1/2) ≈ 0.2 h) to form cyclohexane and fluoride (F(-)) as the stable end products, with benzene and cyclohexene observed as intermediates. Cyclohexadiene intermediates were not observed but were expected to form during the hydrogenation of benzene. Three postulated but unobserved fluorinated intermediates were subjected to the catalytic reaction conditions, and it was concluded that they most likely do not form during the fluorobenzene degradation reaction. Isotope labeling experiments showed that the unsaturated intermediates undergo rapid and reversible hydrogenation/dehydrogenation under the reaction conditions and also that fully saturated compounds are unreactive in the catalytic system. Both molecular hydrogen and water were sources of hydrogen in the final cyclohexane product. Kinetic fitting indicated that sorption/desorption of fluorobenzene onto the catalyst surface plays an important role in the mechanism.


Assuntos
Óxido de Alumínio/química , Fluorbenzenos/isolamento & purificação , Ródio/química , Poluentes Químicos da Água/isolamento & purificação , Catálise , Halogenação , Hidrogenação , Cinética , Modelos Moleculares , Água/análise
5.
Water Res ; 45(1): 75-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20828784

RESUMO

In this paper, we evaluated the ecotoxicological potential of the 100 pharmaceuticals expected to occur in highest quantities in the wastewater of a general hospital and a psychiatric center in Switzerland. We related the toxicity data to predicted concentrations in different wastewater streams to assess the overall risk potential for different scenarios, including conventional biological pretreatment in the hospital and urine source separation. The concentrations in wastewater were estimated with pharmaceutical usage information provided by the hospitals and literature data on human excretion into feces and urine. Environmental concentrations in the effluents of the exposure scenarios were predicted by estimating dilution in sewers and with literature data on elimination during wastewater treatment. Effect assessment was performed using quantitative structure-activity relationships because experimental ecotoxicity data were only available for less than 20% of the 100 pharmaceuticals with expected highest loads. As many pharmaceuticals are acids or bases, a correction for the speciation was implemented in the toxicity prediction model. The lists of Top-100 pharmaceuticals were distinctly different between the two hospital types with only 37 pharmaceuticals overlapping in both datasets. 31 Pharmaceuticals in the general hospital and 42 pharmaceuticals in the psychiatric center had a risk quotient above 0.01 and thus contributed to the mixture risk quotient. However, together they constituted only 14% (hospital) and 30% (psychiatry) of the load of pharmaceuticals. Hence, medical consumption data alone are insufficient predictors of environmental risk. The risk quotients were dominated by amiodarone, ritonavir, clotrimazole, and diclofenac. Only diclofenac is well researched in ecotoxicology, while amiodarone, ritonavir, and clotrimazole have no or very limited experimental fate or toxicity data available. The presented computational analysis thus helps setting priorities for further testing. Separate treatment of hospital wastewater would reduce the pharmaceutical load of wastewater treatment plants, and the risk from the newly identified priority pharmaceuticals. However, because high-risk pharmaceuticals are excreted mainly with feces, urine source separation is not a viable option for reducing the risk potential from hospital wastewater, while a sorption step could be beneficial.


Assuntos
Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Hospitais , Medição de Risco/métodos , Eliminação de Resíduos Líquidos/métodos , Relação Quantitativa Estrutura-Atividade
6.
J Environ Monit ; 12(11): 2100-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20967365

RESUMO

Upon partial degradation of polar organic micropollutants during activated sludge treatment, transformation products (TPs) may be formed that enter the aquatic environment in the treated effluent. However, TPs are rarely considered in prospective environmental risk assessments of wastewater-relevant compound classes such as pharmaceuticals and biocides. Here, we suggest and evaluate a tiered procedure, which includes a fast initial screening step based on high resolution tandem mass spectrometry (HR-MS/MS) and a subsequent confirmatory quantitative analysis, that should facilitate consideration of TPs formed during activated sludge treatment in the exposure assessment of micropollutants. At the first tier, potential biotransformation product structures of seven pharmaceuticals (atenolol, bezafibrate, ketoprofen, metoprolol, ranitidine, valsartan, and venlafaxine) and one biocide (carbendazim) were assembled using computer-based biotransformation pathway prediction and known human metabolites. These target structures were screened for in sludge-seeded batch reactors using HR-MS/MS. The 12 TPs found to form in the batch experiments were then searched for in the effluents of two full-scale, municipal wastewater treatment plants (WWTPs) to confirm the environmental representativeness of this first tier. At the second tier, experiments with the same sludge-seeded batch reactors were carried out to acquire kinetic data for major TPs that were then used as input parameters into a cascaded steady-state completely-stirred tank reactor (CSTR) model for predicting TP effluent concentrations. Predicted effluent concentrations of four parent compounds and their three major TPs were corroborated by comparison to 3-day average influent and secondary effluent mass flows from one municipal WWTP. CSTR model-predicted secondary effluent mass flows agreed within a factor of two with measured mass flows and confidence intervals of predicted and measured mass flows overlapped in all cases. The observed agreement suggests that the combination of batch-determined transformation kinetics with a simple WWTP model may be suitable for estimating aquatic exposure to TPs formed during activated sludge treatment. Overall, we recommend the tiered procedure as a realistic and cost-effective approach to include consideration of TPs of wastewater-relevant compounds into exposure assessment in the context of prospective chemical risk assessment.


Assuntos
Biotransformação , Desinfetantes/metabolismo , Monitoramento Ambiental/métodos , Preparações Farmacêuticas/metabolismo , Esgotos/análise , Espectrometria de Massas em Tandem/métodos , Desinfetantes/análise , Preparações Farmacêuticas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...