Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(6): 9964-9975, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460089

RESUMO

Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the Rhizomucor miehei lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme. Most importantly, we demonstrate that the propeptide shows inhibition of lipase activity in standard lipase assays and propose that an important role of the propeptide is to ensure that the enzyme is not active during its expression pathway in the original host.

2.
Planta ; 232(5): 1127-39, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20700743

RESUMO

Two glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combined repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch. Plants repressed in both isoforms accumulated similar amounts of starch to those lacking StDPE2. In addition, they contained a range of malto-oligosaccharides from maltose to maltoheptaose. Plants repressed in both isoforms had chlorotic leaves and did not grow as well as either the controls or lines where only one of the isoforms was repressed. Examination of photosynthetic parameters suggested that this was most likely due to a decrease in carbon assimilation. The subcellular localisation of StDPE2 was re-addressed in parallel with DPE2 from Arabidopsis thaliana by transient expression of yellow fluorescent protein fusions in tobacco. No translocation to the chloroplasts was observed for any of the fusion proteins, supporting a cytosolic role of the StDPE2 enzyme in leaf starch metabolism, as has been observed for Arabidopsis DPE2. It is concluded that StDPE1 and StDPE2 have individual essential roles in starch metabolism in potato and consequently repression of these disables regulation of leaf malto-oligosaccharides, starch content and photosynthetic activity and thereby plant growth possibly by a negative feedback mechanism.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Isoenzimas/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Immunoblotting , Isoenzimas/genética , Proteínas de Plantas/genética , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/metabolismo
3.
J Exp Bot ; 58(14): 3949-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18024995

RESUMO

Starch phosphorylation catalysed by the alpha-glucan, water dikinases (GWD) has profound effects on starch degradation in plants. The Arabidopsis thaliana genome encodes three isoforms of GWD, two of which are localized in the chloroplast and are involved in the degradation of transient starch. The third isoform, termed AtGWD2 (At4g24450), was heterologously expressed and purified and shown to have a substrate preference similar to potato GWD. Analyses of AtGWD2 null mutants did not reveal any differences in growth or starch and sugar levels, when compared to the wild type. Subcellular localization studies in Arabidopsis leaves and in vitro chloroplast import assays indicated that AtGWD2 was not targeted to the chloroplasts. The AtGWD2 promoter showed a highly restricted pattern of activity, both spatially and temporally. High activity was observed in the companion cells of the phloem, with expression appearing just before the onset of senescence. Taken together, these data indicate that, although AtGWD2 is capable of phosphorylating alpha-glucans in vitro, it is not directly involved in transient starch degradation.


Assuntos
Amilopectina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos , Regulação da Expressão Gênica de Plantas , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Filogenia , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Especificidade por Substrato
4.
Plant J ; 41(4): 595-605, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15686522

RESUMO

An Arabidopsis thaliana gene encoding a homologue of the potato alpha-glucan, water dikinase GWD, previously known as R1, was identified by screening the Arabidopsis genome and named AtGWD3. The AtGWD3 cDNA was isolated, heterologously expressed and the protein was purified to apparent homogeneity to determine the enzymatic function. In contrast to the potato GWD protein, the AtGWD3 primarily catalysed phosphorylation at the C-3 position of the glucose unit of preferably pre-phosphorylated amylopectin substrate with long side chains. An Arabidopsis mutant, termed Atgwd3, with downregulated expression of the AtGWD3 gene was analysed. In Atgwd3 the amount of leaf starch was constantly higher than wild type during the diurnal cycle. Compared with wild-type leaf starch, the level of C-3 phosphorylation of the glucosyl moiety of starch in this mutant was reduced. Taken together, these data indicate that the C-3 linked phospho-ester in starch plays a so far unnoticed specific role in the degradation of transitory starch.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucanos/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/enzimologia , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Isoenzimas/metabolismo , Dados de Sequência Molecular , Fenótipo , Fosfotransferases (Aceptores Pareados)/genética , Folhas de Planta/metabolismo , Especificidade por Substrato
5.
Biochem J ; 377(Pt 2): 525-32, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14525539

RESUMO

GWD (alpha-glucan,water dikinase) is the enzyme that catalyses the phosphorylation of starch by a dikinase-type reaction in which the beta-phosphate of ATP is transferred to either the C-6 or the C-3 position of the glycosyl residue of amylopectin. GWD shows similarity in both sequence and reaction mechanism to bacterial PPS (pyruvate,water dikinase) and PPDK (pyruvate,phosphate dikinase). Amino acid sequence alignments identified a conserved histidine residue located in the putative phosphohistidine domain of potato GWD. Site-directed mutagenesis of this histidine residue resulted in an inactive enzyme and loss of autophosphorylation. Native GWD is a homodimer and shows a strict requirement for the presence of alpha-1,6 branch points in its polyglucan substrate, and exhibits a sharp 20-fold increase in activity when the degree of polymerization is increased from 27.8 to 29.5. In spite of the high variability in the degree of starch phosphorylation, GWD proteins are ubiquitous in plants. The overall reaction mechanism of GWD is similar to that of PPS and PPDK, but the GWD family appears to have arisen after divergence of the plant kingdom. The nucleotide-binding domain of GWD exhibits a closer phylogenetic relationship to prokaryotic PPSs than to PPDKs.


Assuntos
Glucanos/metabolismo , Fosfotransferases/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Histidina/análise , Histidina/fisiologia , Concentração de Íons de Hidrogênio , Mutação , Fosforilação , Fosfotransferases/química , Fosfotransferases/classificação , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Quaternária de Proteína , Solanum tuberosum/enzimologia , Especificidade por Substrato , Temperatura
6.
Trends Plant Sci ; 7(10): 445-50, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12399179

RESUMO

Starch is the primary energy reserve in higher plants and is, after cellulose, the second most abundant carbohydrate in the biosphere. It is also the most important energy source in the human diet and, being a biodegradable polymer with well-defined chemical properties, has an enormous potential as a versatile renewable resource. The only naturally occurring covalent modification of starch is phosphorylation. Starch phosphate esters were discovered a century ago but were long regarded as a curiosity, receiving little attention. Indeed, the mechanism for starch phosphorylation remained completely unknown until recently. The starch-phosphorylating enzyme is an alpha-glucan water dikinase. It is now known that starch phosphorylation plays a central role in starch metabolism.


Assuntos
Plantas/metabolismo , Amido/metabolismo , Amilopectina/metabolismo , Amilose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucose-1-Fosfato Adenililtransferase , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Nucleotidiltransferases/metabolismo , Fosforilação , Plantas/genética , Pesquisa/tendências , Amido/biossíntese , Amido/química
7.
J Biol Chem ; 277(23): 20249-55, 2002 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-11919198

RESUMO

The formation of intermediary glucans, mature starch, and phytoglycogen was studied using leaves of Arabidopsis thaliana wild type and dbe mutant, which lacks plastidic isoamylase (Zeeman, S. C., Umemoto, T., Lue, W. L., Au-Yeung, P., Martin, C., Smith, A. M., and Chen, J. (1998) Plant Cell 10, 1699-1711). A new approach to the study of starch biosynthesis was developed based on "very short pulse" labeling of leaf starch through photosynthetic fixation of (14)CO(2). This allowed selective analysis of the structure of starch formed within a 30-s period. This time frame is shorter than the period required for the formation of a single crystalline amylopectin lamella and consequently permits a direct analysis of intermediary structures during granule formation. Analysis of chain length distribution showed that the most recently formed outer layer of the granules has a structure different from the mature starch. The outer layer is enriched in short chains that are 6-11 glucose residues long. Side chains with 6 glucose residues are the shortest abundant chains formed, and they are formed exclusively by transfer from donor chains of 12 glucose residues or longer. The labeling pattern shows that chain transfer resulting in branching is a rapid and efficient process, and the preferential labeling of shorter chains in the intermediary granule bound glucan is suggested to be a direct consequence of efficient branching. Although similar, the short chain intermediary structure is not identical to phytoglycogen, which is an even more highly branched molecule with very few longer chains (more than 40 glucose residues). Pulse and chase labeling profiles for the dbe mutant showed that the final structure is more highly branched than the intermediary structures, which implies that branching of phytoglycogen occurs over a longer time period than branching of starch.


Assuntos
Glucanos/química , Amido/biossíntese , Arabidopsis/metabolismo , Configuração de Carboidratos , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Glucanos/metabolismo , Glicogênio/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...