Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630613

RESUMO

In this study, we aimed to develop a comprehensive microbial source amplicon database tailored for source tracking in veterinary settings. We rigorously tested our locally curated source tracking database by selecting a frequently accessed environment by veterinary students and veterinarians. By exploring the composition of resident microbiota and identifying potential sources of contamination, including animals, the environment, and human beings, we aimed to provide valuable insights into the dynamics of microbial transmission within veterinary facilities. The 16S rDNA amplicon sequencing was used to determine the bacterial taxonomic profiles of restroom surfaces. Bacterial sources were identified by linking our metadata-enriched local database to the microbiota profiling analysis using high-quality sequences. Microbiota profiling shows the dominance of four phyla: Actinobacteria, Bacteroidetes, Proteobacteria, and Firmicutes. If the restroom cleaning process did not appear to impact microbiota composition, significant differences regarding bacterial distribution were observed between male and female users in different sampling campaigns. Combining 16S rDNA profiling to our specific sources labeling pipeline, we found aquatic and human sources were the primary environment keywords in our campaigns. The probable presence of known animal sources (bovids, insects, equids, suids…) associated with bacterial genera such as Chryseobacterium, Bergeyella, Fibrobacter, and Syntrophococcus was also involved in restroom surfaces, emphasizing the proximity between these restrooms and the exchange of bacteria between people involved in animals handling. To summarize, we have demonstrated that DNA sequence-based source tracking may be integrated with high-throughput bacterial community analysis to enrich microbial investigation of potential bacterial contamination sources, especially for little known or poorly identified taxa. However, more research is needed to determine the tool's utility in other applications.

2.
mSystems ; 7(3): e0150021, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35604118

RESUMO

Snodgrassella is a genus of Betaproteobacteria that lives in the gut of honeybees (Apis spp.) and bumblebees (Bombus spp). It is part of a conserved microbiome that is composed of a few core phylotypes and is essential for bee health and metabolism. Phylogenomic analyses using whole-genome sequences of 75 Snodgrassella strains from 4 species of honeybees and 14 species of bumblebees showed that these strains formed a monophyletic lineage within the Neisseriaceae family, that Snodgrassella isolates from Asian honeybees diverged early from the other species in their evolution, that isolates from honeybees and bumblebees were well separated, and that this genus consists of at least seven species. We propose to formally name two new Snodgrassella species that were isolated from bumblebees: i.e., Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov. Possible evolutionary scenarios for 107 species- or group-specific genes revealed very limited evidence for horizontal gene transfer. Functional analyses revealed the importance of small proteins, defense mechanisms, amino acid transport and metabolism, inorganic ion transport and metabolism and carbohydrate transport and metabolism among these 107 specific genes. IMPORTANCE The microbiome of honeybees (Apis spp.) and bumblebees (Bombus spp.) is highly conserved and represented by few phylotypes. This simplicity in taxon composition makes the bee's microbiome an emergent model organism for the study of gut microbial communities. Since the description of the Snodgrassella genus, which was isolated from the gut of honeybees and bumblebees in 2013, a single species (i.e., Snodgrassella alvi), has been named. Here, we demonstrate that this genus is actually composed of at least seven species, two of which (Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov.) are formally described and named in the present publication. We also report the presence of 107 genes specific to Snodgrassella species, showing notably the importance of small proteins and defense mechanisms in this genus.


Assuntos
Microbiota , Neisseriaceae , Animais , Abelhas , Filogenia , Neisseriaceae/genética
3.
Microbiol Spectr ; 10(2): e0031522, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35311582

RESUMO

Bacterial genes coding for antibiotic resistance represent a major issue in the fight against bacterial pathogens. Among those, genes encoding beta-lactamases target penicillin and related compounds such as carbapenems, which are critical for human health. Beta-lactamases are classified into classes A, B, C, and D, based on their amino acid sequence. Class D enzymes are also known as OXA beta-lactamases, due to the ability of the first enzymes described in this class to hydrolyze oxacillin. While hundreds of class D beta-lactamases with different activity profiles have been isolated from clinical strains, their nomenclature remains very uninformative. In this work, we have carried out a comprehensive survey of a reference database of 80,490 genomes and identified 24,916 OXA-domain containing proteins. These were deduplicated and their representative sequences clustered into 45 non-singleton groups derived from a phylogenetic tree of 1,413 OXA-domain sequences, including five clusters that include the C-terminal domain of the BlaR membrane receptors. Interestingly, 801 known class D beta-lactamases fell into only 18 clusters. To probe the unknown diversity of the class, we selected 10 protein sequences in 10 uncharacterized clusters and studied the activity profile of the corresponding enzymes. A beta-lactamase activity could be detected for seven of them. Three enzymes (OXA-1089, OXA-1090 and OXA-1091) were active against oxacillin and two against imipenem. These results indicate that, as already reported, environmental bacteria constitute a large reservoir of resistance genes that can be transferred to clinical strains, whether through plasmid exchange or hitchhiking with the help of transposase genes. IMPORTANCE The transmission of genes coding for resistance factors from environmental to nosocomial strains is a major component in the development of bacterial resistance toward antibiotics. Our survey of class D beta-lactamase genes in genomic databases highlighted the high sequence diversity of the enzymes that are able to recognize and/or hydrolyze beta-lactam antibiotics. Among those, we could also identify new beta-lactamases that are able to hydrolyze carbapenems, one of the last resort antibiotic families used in human antimicrobial chemotherapy. Therefore, it can be expected that the use of this antibiotic family will fuel the emergence of new beta-lactamases into clinically relevant strains.


Assuntos
Carbapenêmicos , beta-Lactamases , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Oxacilina , Filogenia , beta-Lactamases/genética
4.
Life (Basel) ; 12(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35330084

RESUMO

Considering the importance of microalgae as a promising feedstock for the production of both low- and high-value products, such as lipids and pigments, it is desirable to isolate strains which simultaneously accumulate these two types of products and grow in various conditions in order to widen their biotechnological applicability. A novel freshwater strain from the genus Coelastrella was isolated in Belgium. Compared to other Coelastrella species, the isolate presented rapid growth in phototrophy, dividing 3.5 times per day at a light intensity of 400 µmol·m-2·s-1 and 5% CO2. In addition, nitrogen depletion was associated with the accumulation of astaxanthin, canthaxanthin, and fatty acids, which reached ~30% of dry weight, and a majority of SFAs and MUFAs, which are good precursors for biodiesel. This strain also accumulated astaxanthin and canthaxanthin in heterotrophy. Although the content was very low in this latter condition, it is an interesting feature considering the biotechnological potential of the microalgal heterotrophic growth. Thus, due to its rapid growth in the light, its carotenogenesis, and its fatty acids characteristics, the newly identified Coelastrella strain could be considered as a potential candidate for biorefinery purposes of both low- and high-values products.

5.
Genome Biol ; 23(1): 60, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189924

RESUMO

The decreasing cost of sequencing and concomitant augmentation of publicly available genomes have created an acute need for automated software to assess genomic contamination. During the last 6 years, 18 programs have been published, each with its own strengths and weaknesses. Deciding which tools to use becomes more and more difficult without an understanding of the underlying algorithms. We review these programs, benchmarking six of them, and present their main operating principles. This article is intended to guide researchers in the selection of appropriate tools for specific applications. Finally, we present future challenges in the developing field of contamination detection.


Assuntos
Genômica , Software , Algoritmos , Benchmarking , Genoma
6.
Genes (Basel) ; 13(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205421

RESUMO

The very nature of the last bacterial common ancestor (LBCA), in particular the characteristics of its cell wall, is a critical issue to understand the evolution of life on earth. Although knowledge of the relationships between bacterial phyla has made progress with the advent of phylogenomics, many questions remain, including on the appearance or disappearance of the outer membrane of diderm bacteria (also called Gram-negative bacteria). The phylogenetic transition between monoderm (Gram-positive bacteria) and diderm bacteria, and the associated peptidoglycan expansion or reduction, requires clarification. Herein, using a phylogenomic tree of cultivated and characterized bacteria as an evolutionary framework and a literature review of their cell-wall characteristics, we used Bayesian ancestral state reconstruction to infer the cell-wall architecture of the LBCA. With the same phylogenomic tree, we further revisited the evolution of the division and cell-wall synthesis (dcw) gene cluster using homology- and model-based methods. Finally, extensive similarity searches were carried out to determine the phylogenetic distribution of the genes involved with the biosynthesis of the outer membrane in diderm bacteria. Quite unexpectedly, our analyses suggest that all cultivated and characterized bacteria might have evolved from a common ancestor with a monoderm cell-wall architecture. If true, this would indicate that the appearance of the outer membrane was not a unique event and that selective forces have led to the repeated adoption of such an architecture. Due to the lack of phenotypic information, our methodology cannot be applied to all extant bacteria. Consequently, our conclusion might change once enough information is made available to allow the use of an even more diverse organism selection.


Assuntos
Bactérias , Bactérias Gram-Positivas , Bactérias/genética , Teorema de Bayes , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Filogenia
7.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34694402

RESUMO

It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.


Assuntos
Estramenópilas , Filogenia , Plastídeos/genética
8.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37036103

RESUMO

BACKGROUND: Microbial culture collections play a key role in taxonomy by studying the diversity of their strains and providing well-characterized biological material to the scientific community for fundamental and applied research. These microbial resource centers thus need to implement new standards in species delineation, including whole-genome sequencing and phylogenomics. In this context, the genomic needs of the Belgian Coordinated Collections of Microorganisms were studied, resulting in the GEN-ERA toolbox. The latter is a unified cluster of bioinformatic workflows dedicated to both bacteria and small eukaryotes (e.g., yeasts). FINDINGS: This public toolbox allows researchers without a specific training in bioinformatics to perform robust phylogenomic analyses. Hence, it facilitates all steps from genome downloading and quality assessment, including genomic contamination estimation, to tree reconstruction. It also offers workflows for average nucleotide identity comparisons and metabolic modeling. TECHNICAL DETAILS: Nextflow workflows are launched by a single command and are available on the GEN-ERA GitHub repository (https://github.com/Lcornet/GENERA). All the workflows are based on Singularity containers to increase reproducibility. TESTING: The toolbox was developed for a diversity of microorganisms, including bacteria and fungi. It was further tested on an empirical dataset of 18 (meta)genomes of early branching Cyanobacteria, providing the most up-to-date phylogenomic analysis of the Gloeobacterales order, the first group to diverge in the evolutionary tree of Cyanobacteria. CONCLUSION: The GEN-ERA toolbox can be used to infer completely reproducible comparative genomic and metabolic analyses on prokaryotes and small eukaryotes. Although designed for routine bioinformatics of culture collections, it can also be used by all researchers interested in microbial taxonomy, as exemplified by our case study on Gloeobacterales.


Assuntos
Biologia Computacional , Genômica , Fluxo de Trabalho , Reprodutibilidade dos Testes , Genômica/métodos , Biologia Computacional/métodos , Genoma Microbiano , Filogenia
9.
Genes (Basel) ; 12(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34828348

RESUMO

The continuous increase in sequenced genomes in public repositories makes the choice of interesting bacterial strains for future sequencing projects ever more complicated, as it is difficult to estimate the redundancy between these strains and the already available genomes. Therefore, we developed the Nextflow workflow "ORPER", for "ORganism PlacER", containerized in Singularity, which allows the determination the phylogenetic position of a collection of organisms in the genomic landscape. ORPER constrains the phylogenetic placement of SSU (16S) rRNA sequences in a multilocus reference tree based on ribosomal protein genes extracted from public genomes. We demonstrate the utility of ORPER on the Cyanobacteria phylum, by placing 152 strains of the BCCM/ULC collection.


Assuntos
Automação/métodos , Cianobactérias/genética , Filogenia , RNA Ribossômico 16S/genética , Proteínas Ribossômicas/genética , Ribotipagem/métodos , Análise de Sequência de DNA/métodos , DNA Bacteriano , Processamento Eletrônico de Dados/métodos , Fluxo de Trabalho
10.
Front Microbiol ; 12: 755101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745061

RESUMO

Contaminating sequences in public genome databases is a pervasive issue with potentially far-reaching consequences. This problem has attracted much attention in the recent literature and many different tools are now available to detect contaminants. Although these methods are based on diverse algorithms that can sometimes produce widely different estimates of the contamination level, the majority of genomic studies rely on a single method of detection, which represents a risk of systematic error. In this work, we used two orthogonal methods to assess the level of contamination among National Center for Biotechnological Information Reference Sequence Database (RefSeq) bacterial genomes. First, we applied the most popular solution, CheckM, which is based on gene markers. We then complemented this approach by a genome-wide method, termed Physeter, which now implements a k-folds algorithm to avoid inaccurate detection due to potential contamination of the reference database. We demonstrate that CheckM cannot currently be applied to all available genomes and bacterial groups. While it performed well on the majority of RefSeq genomes, it produced dubious results for 12,326 organisms. Among those, Physeter identified 239 contaminated genomes that had been missed by CheckM. In conclusion, we emphasize the importance of using multiple methods of detection while providing an upgrade of our own detection tool, Physeter, which minimizes incorrect contamination estimates in the context of unavoidably contaminated reference databases.

11.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34730487

RESUMO

The medically relevant Trichophyton rubrum species complex has a variety of phenotypic presentations but shows relatively little genetic differences. Conventional barcodes, such as the internal transcribed spacer (ITS) region or the beta-tubulin gene, are not able to completely resolve the relationships between these closely related taxa. T. rubrum, T. soudanense and T. violaceum are currently accepted as separate species. However, the status of certain variants, including the T. rubrum morphotypes megninii and kuryangei and the T. violaceum morphotype yaoundei, remains to be deciphered. We conducted the first phylogenomic analysis of the T. rubrum species complex by studying 3105 core genes of 18 new strains from the BCCM/IHEM culture collection and nine publicly available genomes. Our analyses revealed a highly resolved phylogenomic tree with six separate clades. Trichophyton rubrum, T. violaceum and T. soudanense were confirmed in their status of species. The morphotypes T. megninii, T. kuryangei and T. yaoundei all grouped in their own respective clade with high support, suggesting that these morphotypes should be reinstituted to the species-level. Robinson-Foulds distance analyses showed that a combination of two markers (a ubiquitin-protein transferase and a MYB DNA-binding domain-containing protein) can mirror the phylogeny obtained using genomic data, and thus represent potential new markers to accurately distinguish the species belonging to the T. rubrum complex.


Assuntos
Arthrodermataceae , Trichophyton , Arthrodermataceae/genética , Filogenia , Trichophyton/genética
12.
New Phytol ; 232(4): 1603-1617, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392544

RESUMO

The coupling between mitochondrial respiration and photosynthesis plays an important role in the energetic physiology of green plants and some secondary-red photosynthetic eukaryotes (diatoms), allowing an efficient CO2 assimilation and optimal growth. Using the flagellate Euglena gracilis, we first tested if photosynthesis-respiration coupling occurs in this species harbouring secondary green plastids (i.e. originated from an endosymbiosis between a green alga and a phagotrophic euglenozoan). Second, we tested how the trophic state (mixotrophy and photoautotrophy) of the cell alters the mechanisms involved in the photosynthesis-respiration coupling. Energetic coupling between photosynthesis and respiration was determined by testing the effect of respiratory inhibitors on photosynthesis, and measuring the simultaneous variation of photosynthesis and respiration rates as a function of temperature (i.e. thermal response curves). The mechanism involved in the photosynthesis-respiration coupling was assessed by combining proteomics, biophysical and cytological analyses. Our work shows that there is photosynthesis-respiration coupling and membrane contacts between mitochondria and chloroplasts in E. gracilis. However, whereas in mixotrophy adjustment of the chloroplast ATP/NADPH ratio drives the interaction, in photoautotrophy the coupling is conditioned by CO2 limitation and photorespiration. This indicates that maintenance of photosynthesis-respiration coupling, through plastic metabolic responses, is key to E. gracilis functioning under changing environmental conditions.


Assuntos
Euglena gracilis , Fotossíntese , Dióxido de Carbono , Cloroplastos , Euglena gracilis/fisiologia , Plastídeos
13.
BMC Res Notes ; 14(1): 306, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372933

RESUMO

OBJECTIVES: Complex algae are photosynthetic organisms resulting from eukaryote-to-eukaryote endosymbiotic-like interactions. Yet the specific lineages and mechanisms are still under debate. That is why large scale phylogenomic studies are needed. Whereas available proteomes provide a limited diversity of complex algae, MMETSP (Marine Microbial Eukaryote Transcriptome Sequencing Project) transcriptomes represent a valuable resource for phylogenomic analyses, owing to their broad and rich taxonomic sampling, especially of photosynthetic species. Unfortunately, this sampling is unbalanced and sometimes highly redundant. Moreover, we observed contaminated sequences in some samples. In such a context, tree inference and readability are impaired. Consequently, the aim of the data processing reported here is to release a unique set of clean and non-redundant transcriptomes produced through an original protocol featuring decontamination, pooling and dereplication steps. DATA DESCRIPTION: We submitted 678 MMETSP re-assembly samples to our parallel consolidation pipeline. Hence, we combined 423 samples into 110 consolidated transcriptomes, after the systematic removal of the most contaminated samples (186). This approach resulted in a total of 224 high-quality transcriptomes, easy to use and suitable to compute less contaminated, less redundant and more balanced phylogenies.


Assuntos
Eucariotos , Transcriptoma , Descontaminação , Eucariotos/genética , Filogenia , Plantas , Transcriptoma/genética
14.
Genes (Basel) ; 12(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072576

RESUMO

Euglena gracilis is a well-known photosynthetic microeukaryote considered as the product of a secondary endosymbiosis between a green alga and a phagotrophic unicellular belonging to the same eukaryotic phylum as the parasitic trypanosomatids. As its nuclear genome has proven difficult to sequence, reliable transcriptomes are important for functional studies. In this work, we assembled a new consensus transcriptome by combining sequencing reads from five independent studies. Based on a detailed comparison with two previously released transcriptomes, our consensus transcriptome appears to be the most complete so far. Remapping the reads on it allowed us to compare the expression of the transcripts across multiple culture conditions at once and to infer a functionally annotated network of co-expressed genes. Although the emergence of meaningful gene clusters indicates that some biological signal lies in gene expression levels, our analyses confirm that gene regulation in euglenozoans is not primarily controlled at the transcriptional level. Regarding the origin of E. gracilis, we observe a heavily mixed gene ancestry, as previously reported, and rule out sequence contamination as a possible explanation for these observations. Instead, they indicate that this complex alga has evolved through a convoluted process involving much more than two partners.


Assuntos
Euglena gracilis/genética , Transcriptoma , Euglena gracilis/classificação , Euglena gracilis/metabolismo , Evolução Molecular , Filogenia , Análise de Sequência de RNA/normas
15.
PeerJ ; 9: e11348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996287

RESUMO

TQMD is a tool for high-performance computing clusters which downloads, stores and produces lists of dereplicated prokaryotic genomes. It has been developed to counter the ever-growing number of prokaryotic genomes and their uneven taxonomic distribution. It is based on word-based alignment-free methods (k-mers), an iterative single-linkage approach and a divide-and-conquer strategy to remain both efficient and scalable. We studied the performance of TQMD by verifying the influence of its parameters and heuristics on the clustering outcome. We further compared TQMD to two other dereplication tools (dRep and Assembly-Dereplicator). Our results showed that TQMD is primarily optimized to dereplicate at higher taxonomic levels (phylum/class), as opposed to the other dereplication tools, but also works at lower taxonomic levels (species/strain) like the other dereplication tools. TQMD is available from source and as a Singularity container at [https://bitbucket.org/phylogeno/tqmd ].

16.
BMC Res Notes ; 14(1): 143, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865444

RESUMO

OBJECTIVES: Identifying orthology relationships among sequences is essential to understand evolution, diversity of life and ancestry among organisms. To build alignments of orthologous sequences, phylogenomic pipelines often start with all-vs-all similarity searches, followed by a clustering step. For the protein clusters (orthogroups) to be as accurate as possible, proteomes of good quality are needed. Here, our objective is to assemble a data set especially suited for the phylogenomic study of algae and formerly photosynthetic eukaryotes, which implies the proper integration of organellar data, to enable distinguishing between several copies of one gene (paralogs), taking into account their cellular compartment, if necessary. DATA DESCRIPTION: We submitted 73 top-quality and taxonomically diverse proteomes to OrthoFinder. We obtained 47,266 orthogroups and identified 11,775 orthogroups with at least two algae. Whenever possible, sequences were functionally annotated with eggNOG and tagged after their genomic and target compartment(s). Then we aligned and computed phylogenetic trees for the orthogroups with IQ-TREE. Finally, these trees were further processed by identifying and pruning the subtrees exclusively composed of plastid-bearing organisms to yield a set of 31,784 clans suitable for studying photosynthetic organism genome evolution.


Assuntos
Eucariotos/genética , Filogenia , Plastídeos/genética , Evolução Molecular , Genoma , Plantas
17.
Mol Phylogenet Evol ; 162: 107100, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33592234

RESUMO

Understanding the evolutionary history of symbiotic Cyanobacteria at a fine scale is essential to unveil patterns of associations with their hosts and factors driving their spatiotemporal interactions. As for bacteria in general, Horizontal Gene Transfers (HGT) are expected to be rampant throughout their evolution, which justified the use of single-locus phylogenies in macroevolutionary studies of these photoautotrophic bacteria. Genomic approaches have greatly increased the amount of molecular data available, but the selection of orthologous, congruent genes that are more likely to reflect bacterial macroevolutionary histories remains problematic. In this study, we developed a synteny-based approach and searched for Collinear Orthologous Regions (COR), under the assumption that genes that are present in the same order and orientation across a wide monophyletic clade are less likely to have undergone HGT. We searched sixteen reference Nostocales genomes and identified 99 genes, part of 28 COR comprising three to eight genes each. We then developed a bioinformatic pipeline, designed to minimize inter-genome contamination and processed twelve Nostoc-associated lichen metagenomes. This reduced our original dataset to 90 genes representing 25 COR, which were used to infer phylogenetic relationships within Nostocales and among lichenized Cyanobacteria. This dataset was narrowed down further to 71 genes representing 22 COR by selecting only genes part of one (largest) operon per COR. We found a relatively high level of congruence among trees derived from the 90-gene dataset, but congruence was only slightly higher among genes within a COR compared to genes across COR. However, topological congruence was significantly higher among the 71 genes part of one operon per COR. Nostocales phylogenies resulting from concatenation and species tree approaches based on the 90- and 71-gene datasets were highly congruent, but the most highly supported result was obtained when using synteny, collinearity, and operon information (i.e., 71-gene dataset) as gene selection criteria, which outperformed larger datasets with more genes.


Assuntos
Cianobactérias/genética , Transferência Genética Horizontal , Filogenia , Sintenia , Evolução Molecular , Genômica
18.
Bioinformatics ; 36(15): 4345-4347, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32415965

RESUMO

SUMMARY: To support small and large-scale genome mining projects, we present Post-processing Analysis tooLbox for ANTIsmash Reports (Palantir), a dedicated software suite for handling and refining secondary metabolite biosynthetic gene cluster (BGC) data annotated with the popular antiSMASH pipeline. Palantir provides new functionalities building on NRPS/PKS predictions from antiSMASH, such as improved BGC annotation, module delineation and easy access to sub-sequences at different levels (cluster, gene, module and domain). Moreover, it can parse user-provided antiSMASH reports and reformat them for direct use or storage in a relational database. AVAILABILITY AND IMPLEMENTATION: Palantir is released both as a Perl API available on CPAN (https://metacpan.org/release/Bio-Palantir) and as a web application (http://palantir.uliege.be). As a practical use case, the web interface also features a database built from the mining of 1616 cyanobacterial genomes, of which 1488 were predicted to encode at least one BGC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Vias Biossintéticas , Software , Bactérias/genética , Anotação de Sequência Molecular , Família Multigênica
19.
Biotechnol Adv ; 37(8): 107449, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518630

RESUMO

Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.


Assuntos
Fungos , Genoma Fúngico , Vias Biossintéticas , Biologia Computacional , Família Multigênica , Peptídeos
20.
Free Radic Biol Med ; 140: 206-223, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31078731

RESUMO

Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast. Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the evolution of cyanobacteria and oxygenic photosynthesis.


Assuntos
Evolução Biológica , Cloroplastos/metabolismo , Cianobactérias/metabolismo , Oxigênio/metabolismo , Cianobactérias/genética , Fósseis , Oxirredução , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...