Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 108038, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37876609

RESUMO

The combination of pamapimod and pioglitazone (KIN001) has a synergetic antiviral, anti-inflammatory, and antifibrotic activity, which may prevent evolution toward COVID-19-associated severe respiratory failure. In a randomized, placebo-controlled, double-blind, phase 2, multicenter trial, 128 non-critically ill hospitalized patients with confirmed COVID-19 were treated with KIN001 or a placebo for 28 days. The proportion of patients alive and free of oxygen or respiratory support at the end of the therapy was lower than anticipated but not different in the two groups (KIN001 n = 19, 29%, placebo n = 21, 33%). 85 participants had at least one adverse event, with no difference in the number and distribution of events between the two groups. The clinical trial was stopped for futility, mainly due to a lower-than-expected incidence of the primary endpoint. KIN001 was safe and well-tolerated but had no significant effect on clinical outcome.

2.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743273

RESUMO

The SARS-CoV-2 pandemic remains a major public health threat, especially due to newly emerging SARS-CoV-2 Variants of Concern (VoCs), which are more efficiently transmitted, more virulent, and more able to escape naturally acquired and vaccine-induced immunity. Recently, the protease inhibitor Paxlovid® and the polymerase inhibitor molnupiravir, both targeting mutant-prone viral components, were approved for high-risk COVID-19 patients. Nevertheless, effective therapeutics to treat COVID-19 are urgently needed, especially small molecules acting independently of VoCs and targeting genetically stable cellular pathways which are crucial for viral replication. Pamapimod is a selective inhibitor of p38 Mitogen-Activated Protein Kinase alpha (p38 MAPKα) that has been extensively clinically evaluated for the treatment of rheumatoid arthritis. Signaling via p38 has recently been described as a key pathway for the replication of SARS-CoV-2. Here, we reveal that the combination of pamapimod with pioglitazone, an anti-inflammatory and approved drug for the treatment of type 2 diabetes, possesses potent and synergistic activity to inhibit SARS-CoV-2 replication in vitro. Both drugs showed similar antiviral potency across several cultured cell types and similar antiviral activity against SARS-CoV-2 Wuhan type, and the VoCs Alpha, Beta, Gamma, Delta, and Omicron. These data support the combination of pamapimod and pioglitazone as a potential therapy to reduce duration and severity of disease in COVID-19 patients, an assumption currently evaluated in an ongoing phase II clinical study.


Assuntos
Tratamento Farmacológico da COVID-19 , Diabetes Mellitus Tipo 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Piridonas , Pirimidinas , SARS-CoV-2
3.
Invest Ophthalmol Vis Sci ; 60(14): 4759-4773, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738824

RESUMO

Purpose: Reaggregates from E6 embryonic chicken retina exhibit areas corresponding to an inner plexiform layer (IPL), which presents an ideal in vitro model to test conditions and constraints of cholinergic and glutamatergic network formation, providing a basis for retinal tissue engineering. Here, we show that ipl formation is regulated by cholinergic starburst amacrine cells (SACs), a glial scaffold and by L-glutamate. Methods: Rosetted spheroids were cultured in absence or presence of 0.2 to 0.4 mM L-glutamate and analyzed by immuno- and enzyme histochemistry, proliferation, and apoptosis assays. Results: After 2 days in vitro (div), ipl formation was announced by acetylcholinesterase+ (AChE) and choline acetyltransferase+ (ChAT) cells. Individual vimentin+ or transitin+ Müller glial cell precursors (MCPs) in ipl centers coexpressed ChAT. Comparable to in vivo, pairwise arranged ChAT+ SACs formed two laminar subbands. Projections of calretinin+ amacrine cells (ACs) into ipl associated with MCP processes. In L-glutamate-, or NMDA-treated spheroids ipls were disrupted, including loss of SACs and MCs; coincubation with NMDA receptor inhibitor MK-801 prevented these effects. Also, many Pax6+ cells, comprising most ACs, were lost, while rho4D2+ rod photoreceptors were increased. Cell proliferation was slightly increased, while apoptosis remained unaffected. Conclusions: This demonstrated: (1) a far-advanced differentiation of an IPL in retinal spheroids, as never described before; (2) ipl sublamination was initiated by cholinergic precursor cells, which-functioning as "ipl founder cells"-(3) gave rise to neurons and glial cells; (4) these SACs and MCPs together organized ipl formation; and (5) this process was counteracted by NMDA-dependent glutamate actions.


Assuntos
Diferenciação Celular/fisiologia , Colinérgicos/farmacologia , Células Ependimogliais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Retina/embriologia , Transdução de Sinais/fisiologia , Esferoides Celulares/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Embrião de Galinha , Colina O-Acetiltransferase/metabolismo , Crioultramicrotomia , Ácido Glutâmico/farmacologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Neurônios Retinianos/citologia , Esferoides Celulares/metabolismo , Fixação de Tecidos , Vimentina/metabolismo
4.
PLoS One ; 12(11): e0188596, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182629

RESUMO

Various insults cause ototoxicity in mammals by increasing oxidative stress leading to apoptosis of auditory hair cells (HCs). The thiazolidinediones (TZDs; e.g., pioglitazone) and fibrate (e.g., fenofibrate) drugs are used for the treatment of diabetes and dyslipidemia. These agents target the peroxisome proliferator-activated receptors, PPARγ and PPARα, which are transcription factors that influence glucose and lipid metabolism, inflammation, and organ protection. In this study, we explored the effects of pioglitazone and other PPAR agonists to prevent gentamicin-induced oxidative stress and apoptosis in mouse organ of Corti (OC) explants. Western blots showed high levels of PPARγ and PPARα proteins in mouse OC lysates. Immunofluorescence assays indicated that PPARγ and PPARα proteins are present in auditory HCs and other cell types in the mouse cochlea. Gentamicin treatment induced production of reactive oxygen species (ROS), lipid peroxidation, caspase activation, PARP-1 cleavage, and HC apoptosis in cultured OCs. Pioglitazone mediated its anti-apoptotic effects by opposing the increase in ROS induced by gentamicin, which inhibited the subsequent formation of 4-hydroxy-2-nonenal (4-HNE) and activation of pro-apoptotic mediators. Pioglitazone mediated its effects by upregulating genes that control ROS production and detoxification pathways leading to restoration of the reduced:oxidized glutathione ratio. Structurally diverse PPAR agonists were protective of HCs. Pioglitazone (PPARγ-specific), tesaglitazar (PPARγ/α-specific), and fenofibric acid (PPARα-specific) all provided >90% protection from gentamicin toxicity by regulation of overlapping subsets of genes controlling ROS detoxification. This study revealed that PPARs play important roles in the cochlea, and that PPAR-targeting drugs possess therapeutic potential as treatment for hearing loss.


Assuntos
Cóclea/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Estresse Oxidativo , PPAR alfa/agonistas , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Cóclea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pioglitazona , Espécies Reativas de Oxigênio/metabolismo
5.
Biol Open ; 6(7): 979-992, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28546339

RESUMO

In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies.

6.
JAMA Psychiatry ; 71(6): 637-46, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696094

RESUMO

IMPORTANCE: In schizophrenia, the severity of negative symptoms is a key predictor of long-term disability. Deficient signaling through the N-methyl-D-aspartate receptor is hypothesized to underlie many signs and symptoms associated with schizophrenia in particular negative symptoms. Glycine acts as an N-methyl-D-aspartate receptor coagonist. Blockade of the glycine transporter type 1 to inhibit glycine reuptake and elevate synaptic glycine concentrations represents an effective strategy to enhance N-methyl-D-aspartate receptor transmission. OBJECTIVE: To determine the efficacy and safety of bitopertin (RG1678), a glycine reuptake inhibitor, in patients with schizophrenia and predominant negative symptoms who were stable while taking an antipsychotic treatment. DESIGN, SETTING, AND PARTICIPANTS: This randomized, double-blind, placebo-controlled, phase 2 proof-of-concept trial involved 323 patients with schizophrenia and predominant negative symptoms across 66 sites worldwide. INTERVENTIONS: Bitopertin (10, 30, or 60 mg/d) or placebo added to standard antipsychotic therapy for a treatment duration of 8 weeks. MAIN OUTCOMES AND MEASURES: Change from baseline in the Positive and Negative Syndrome Scale negative factor score. RESULTS: In the per-protocol population, 8 weeks of treatment with bitopertin was associated with a significant reduction of negative symptoms in the 10-mg/d (mean [SE] reduction in negative symptoms score, -25% [2%]; P = .049) and 30-mg/d (mean [SE], -25% [2%]; P = .03) bitopertin groups, a significantly higher response rate and a trend toward improved functioning in the 10-mg/d group when compared with placebo (mean [SE], -19% [2%]). Results reached trend-level significance in the intent-to-treat population. Estimates of bitopertin binding to glycine transporter type 1 showed that low to medium levels of occupancy yielded optimal efficacy in patients, consistent with findings in preclinical assays. CONCLUSIONS AND RELEVANCE: Bitopertin-mediated glycine reuptake inhibition may represent a novel treatment option for schizophrenia, with the potential to address negative symptoms. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00616798.


Assuntos
Antipsicóticos/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Piperazinas/uso terapêutico , Esquizofrenia/tratamento farmacológico , Psicologia do Esquizofrênico , Sulfonas/uso terapêutico , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Masculino , Piperazinas/efeitos adversos , Esquizofrenia/diagnóstico , Sulfonas/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...