Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 685: 108347, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32194045

RESUMO

The reason that determines the pathological deposition of human apolipoprotein A-I variants inducing organ failure has been under research since the early description of natural mutations in patients. To shed light into the events associated with protein aggregation, we studied the structural perturbations that may occur in the natural variant that shows a substitution of a Leucine by an Arginine in position 60 (L60R). Circular dichroism, intrinsic fluorescence measurements, and proteolysis analysis indicated that L60R was more unstable, more sensitive to cleavage and the N-terminus was more disorganized than the protein with the native sequence (Wt). A higher tendency to aggregate was also detected when L60R was incubated at physiological pH. In addition, the small structural rearrangement observed for the freshly folded variant led to the release of tumor necrosis factor-α and interleukin-1ß from a model of macrophages. However, the mutant preserved both its dimeric conformation and its lipid-binding capacity. Our results strongly suggest that the chronic disease may be a consequence of the native conformation loss which elicits the release of protein conformations that could be either cytotoxic or precursors of amyloid conformations.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Apolipoproteína A-I/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Amiloidose/etiologia , Amiloidose/genética , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Humanos , Mutação Puntual , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína
2.
Toxins (Basel) ; 6(9): 2657-75, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25208009

RESUMO

We exposed water samples from a recreational lake dominated by the cyanobacterium Planktothrix agardhii to different concentrations of hydrogen peroxide (H2O2). An addition of 0.33 mg·L-1 of H2O2 was the lowest effective dose for the decay of chlorophyll-a concentration to half of the original in 14 h with light and 17 h in experiments without light. With 3.33 mg·L-1 of H2O2, the values of the chemical oxygen demand (COD) decreased to half at 36 and 126 h in experiments performed with and without light, respectively. With increasing H2O2, there is a decrease in the total and faecal coliform, and this effect was made more pronounced by light. Total and faecal coliform were inhibited completely 48 h after addition of 3.33 mg·L-1 H2O2. Although the densities of cyanobacterial cells exposed to H2O2 did not decrease, transmission electron microscope observation of the trichomes showed several stages of degeneration, and the cells were collapsed after 48 h of 3.33 mg·L-1 of H2O2 addition in the presence of light. Our results demonstrate that H2O2 could be potentially used in hypertrophic systems because it not only collapses cyanobacterial cells and coliform bacteria but may also reduce chlorophyll-a content and chemical oxygen demand.


Assuntos
Anti-Infecciosos/farmacologia , Cianobactérias/efeitos dos fármacos , Eutrofização/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Bioensaio , Análise da Demanda Biológica de Oxigênio , Clorofila/análise , Clorofila A , Cianobactérias/crescimento & desenvolvimento , Enterobacteriaceae/efeitos dos fármacos , Laboratórios , Lagos , Luz , Poluentes da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...