Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38006014

RESUMO

TNX-1800 is a synthetically derived live recombinant chimeric horsepox virus (rcHPXV) vaccine candidate expressing Wuhan SARS-CoV-2 spike (S) protein. The primary objective of this study was to evaluate the immunogenicity and efficacy of TNX-1800 in two nonhuman primate species challenged with USA-WA1/2020 SARS-CoV-2. TNX-1800 vaccination was well tolerated with no serious adverse events or significant changes in clinical parameters. A single dose of TNX-1800 generated humoral responses in African Green Monkeys and Cynomolgus Macaques, as measured by the total binding of anti-SARS-CoV-2 S IgG and neutralizing antibody titers against the USA-WA1/2020 strain. In addition, a single dose of TNX-1800 induced an interferon-gamma (IFN-γ)-mediated T-cell response in Cynomolgus Macaques. Following challenge with SARS-CoV-2, African Green and Cynomolgus Macaques exhibited rapid clearance of virus in the upper and lower respiratory tract. Future studies will assess the efficacy of TNX-1800 against newly emerging variants and demonstrate its safety in humans.

2.
Viruses ; 15(10)2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896908

RESUMO

TNX-1800 is a preclinical stage synthetic-derived live attenuated chimeric horsepox virus vaccine engineered to express the SARS-CoV-2 spike (S) gene. The objectives of this study were to assess the safety, tolerability, and immunogenicity of TNX-1800 administration in Syrian golden hamsters and New Zealand white rabbits. Animals were vaccinated at three doses via percutaneous inoculation. The data showed that the single percutaneous administration of three TNX-1800 vaccine dose levels was well tolerated in both hamsters and rabbits. At all dose levels, rabbits were more decerning regarding vaccine site reaction than hamsters. Lastly, no TNX-1800 genomes could be detected at the site of vaccination. Post-vaccination, all animals had anti-SARS-CoV-2 spike protein IgG specific antibody responses. These data demonstrate that TNX-1800 infection was limited, asymptomatic, and cleared by the end of this study, and a single dose was able to generate immune responses.


Assuntos
COVID-19 , Poxviridae , Cricetinae , Coelhos , Animais , Mesocricetus , SARS-CoV-2/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Anticorpos Antivirais , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
3.
Antiviral Res ; 210: 105513, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592670

RESUMO

Antibody-based therapy is emerging as a critical therapeutic countermeasure to treat acute viral infections by offering rapid protection against clinical disease. The advancements in structural biology made it feasible to rationalize monoclonal antibodies (mAbs) by identifying key and, possibly, neutralizing epitopes of viral proteins for therapeutic purposes. A critical component in assessing mAbs during pandemics requires the development of rapid but detailed methods to detect and quantitate the neutralization activity. In this study, we developed and optimized two high-content image (HCI)-based assays: one to detect viral proteins by staining and the second to quantify cytopathic viral effects by a label-free phenotypic assay. These assays were employed to screen for therapeutic antibodies against the monkeypox virus (MPXV) using surrogate poxviruses such as vaccinia virus (VACV). Plaque-based neutralization results confirmed the HCI data. The phenotypic assay found pox virus-induced syncytia formation in various cells, and we were able to quantitate and use this phenotype to screen mAbs. The HCI identified several potent VACV-neutralizing antibodies that showed in vitro efficacy against both clades of MPXV. In addition, a combination study of ST-246/tecovirimat/TPOXX a single neutralizing antibody Ab-40, showed synergistic activity against VACV in an in-vitro neutralization assay. This rapid high-content method utilizing state-of-the-art technologies enabled the evaluation of hundreds of mAbs quickly to identify several potent anti-MPXV neutralizing mAbs for further development.


Assuntos
Anticorpos Antivirais , Monkeypox virus , Anticorpos Neutralizantes , Vaccinia virus/genética , Proteínas Virais , Anticorpos Monoclonais/farmacologia , Testes de Neutralização
4.
PLoS Negl Trop Dis ; 16(5): e0010081, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533188

RESUMO

Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61-68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure.


Assuntos
Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Aerossóis , Animais , Encéfalo , Modelos Animais de Doenças , Encefalomielite Equina/patologia , Cavalos , Macaca fascicularis , RNA Viral , Medula Espinal/patologia
5.
Front Microbiol ; 13: 803041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369443

RESUMO

Current therapies for anthrax include the use of antibiotics (i.e., doxycycline, and ciprofloxacin), an anthrax vaccine (BioThrax) and Bacillus anthracis-specific, monoclonal antibody (mAb) (i.e., Raxibacumab and obiltoxaximab). In this study, we investigated the activity of immunomodulators, which potentiate inflammatory responses through innate immune receptors. The rationale for the use of innate immune receptor agonists as adjunctive immunomodulators for infectious diseases is based on the concept that augmentation of host defense should promote the antimicrobial mechanism of the host. Our aim was to explore the anti-B. anthracis effector function of Toll-like receptor (TLR) agonists using a mouse model. Amongst the six TLR ligands tested, Pam3CSK4 (TLR1/2 ligand) was the best at protecting mice from lethal challenge of B. anthracis. We then evaluated the activity of a novel TLR2 ligand, DA-98-WW07. DA-98-WW07 demonstrated enhanced protection in B. anthracis infected mice. The surviving mice that received DA-98-WW07 when re-challenged with B. anthracis 20 days post the first infection showed increased survival rate. Moreover, ciprofloxacin, when treated in adjunct with a suboptimal concentration of DA-98-WW07 demonstrated augmented activity in protecting mice from B. anthracis infection. Taken together, we report the prophylactic treatment potential of DA-98-WW07 for anthrax and the utility of immunomodulators in combination with an antibiotic to treat infections caused by the B. anthracis bacterium.

6.
Cell Biosci ; 11(1): 220, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-34953502

RESUMO

BACKGROUND: Although multiple studies have demonstrated a role for exosomes during virus infections, our understanding of the mechanisms by which exosome exchange regulates immune response during viral infections and affects viral pathogenesis is still in its infancy. In particular, very little is known for cytoplasmic single-stranded RNA viruses such as SARS-CoV-2 and Rift Valley fever virus (RVFV). We have used RVFV infection as a model for cytoplasmic single-stranded RNA viruses to address this gap in knowledge. RVFV is a highly pathogenic agent that causes RVF, a zoonotic disease for which no effective therapeutic or approved human vaccine exist. RESULTS: We show here that exosomes released from cells infected with RVFV (designated as EXi-RVFV) serve a protective role for the host and provide a mechanistic model for these effects. Our results show that treatment of both naïve immune cells (U937 monocytes) and naïve non-immune cells (HSAECs) with EXi-RVFV induces a strong RIG-I dependent activation of IFN-B. We also demonstrate that this strong anti-viral response leads to activation of autophagy in treated cells and correlates with resistance to subsequent viral infection. Since we have shown that viral RNA genome is associated with EXi-RVFV, RIG-I activation might be mediated by the presence of packaged viral RNA sequences. CONCLUSIONS: Using RVFV infection as a model for cytoplasmic single-stranded RNA viruses, our results show a novel mechanism of host protection by exosomes released from infected cells (EXi) whereby the EXi activate RIG-I to induce IFN-dependent activation of autophagy in naïve recipient cells including monocytes. Because monocytes serve as reservoirs for RVFV replication, this EXi-RVFV-induced activation of autophagy in monocytes may work to slow down or halt viral dissemination in the infected organism. These findings offer novel mechanistic insights that may aid in future development of effective vaccines or therapeutics, and that may be applicable for a better molecular understanding of how exosome release regulates innate immune response to other cytoplasmic single-stranded RNA viruses.

8.
Sci Rep ; 11(1): 19458, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593911

RESUMO

Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Administração Intravenosa , Aerossóis , Alanina/administração & dosagem , Alanina/farmacologia , Animais , Antivirais/administração & dosagem , Modelos Animais de Doenças , Feminino , Doença pelo Vírus Ebola/sangue , Estimativa de Kaplan-Meier , Fígado/efeitos dos fármacos , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Linfonodos/virologia , Macaca mulatta , Masculino , Distribuição Aleatória , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/virologia , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico
9.
Front Pharmacol ; 12: 763950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646144

RESUMO

Botulinum neurotoxins (BoNTs) are known as the most potent bacterial toxins, which can cause potentially deadly disease botulism. BoNT Serotype A (BoNT/A) is the most studied serotype as it is responsible for most human botulism cases, and its formulations are extensively utilized in clinics for therapeutic and cosmetic applications. BoNT/A has the longest-lasting effect in neurons compared to other serotypes, and there has been high interest in understanding how BoNT/A manages to escape protein degradation machinery in neurons for months. Recent work demonstrated that an E3 ligase, HECTD2, leads to efficient ubiquitination of the BoNT/A Light Chain (A/LC); however, the dominant activity of a deubiquitinase (DUB), VCIP135, inhibits the degradation of the enzymatic component. Another DUB, USP9X, was also identified as a potential indirect contributor to A/LC degradation. In this study, we screened a focused ubiquitin-proteasome pathway inhibitor library, including VCIP135 and USP9X inhibitors, and identified ten potential lead compounds affecting BoNT/A mediated SNAP-25 cleavage in neurons in pre-intoxication conditions. We then tested the dose-dependent effects of the compounds and their potential toxic effects in cells. A subset of the lead compounds demonstrated efficacy on the stability and ubiquitination of A/LC in cells. Three of the compounds, WP1130 (degrasyn), PR-619, and Celastrol, further demonstrated efficacy against BoNT/A holotoxin in an in vitro post-intoxication model. Excitingly, PR-619 and WP1130 are known inhibitors of VCIP135 and USP9X, respectively. Modulation of BoNT turnover in cells by small molecules can potentially lead to the development of effective countermeasures against botulism.

10.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463877

RESUMO

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos
12.
PLoS Negl Trop Dis ; 15(6): e0009424, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138849

RESUMO

Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30-90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0-4.2°C), respiration rate (+56-128%), activity (-15-76% daytime and +5-22% nighttime), heart rate (+67-190%), systolic (+44-67%) and diastolic blood pressure (+45-80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (~12-24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ~99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ~106-140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.


Assuntos
Infecções por Alphavirus/virologia , Modelos Animais de Doenças , Eletroencefalografia , Vírus da Encefalite Equina do Leste , Monitorização Fisiológica/instrumentação , Telemetria/instrumentação , Aerossóis , Infecções por Alphavirus/patologia , Animais , Pressão Sanguínea , Temperatura Corporal , Chlorocebus aethiops , Feminino , Frequência Cardíaca , Humanos , Macaca fascicularis , Masculino , Monitorização Fisiológica/métodos , Atividade Motora , Fenômenos Fisiológicos Respiratórios , Telemetria/métodos , Células Vero
15.
Virus Res ; 292: 198246, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249060

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-COV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally bioavailable compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine nucleotide biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS-COV-2 replication (EC50 range, 2.0-31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17 F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.


Assuntos
Antivirais/farmacologia , Carbamatos/farmacologia , Carbazóis/farmacologia , Citocinas/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas/imunologia , Di-Hidro-Orotato Desidrogenase , Células HeLa , Humanos , Inflamação/tratamento farmacológico , Inflamação/virologia , Células Vero , Tratamento Farmacológico da COVID-19
16.
J Infect Dis ; 224(4): 632-642, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33367826

RESUMO

BACKGROUND: Ebola virus disease (EVD) supportive care strategies are largely guided by retrospective observational research. This study investigated the effect of EVD supportive care algorithms on duration of survival in a controlled nonhuman primate (NHP) model. METHODS: Fourteen rhesus macaques were challenged intramuscularly with a target dose of Ebola virus (1000 plaque-forming units; Kikwit). NHPs were allocated to intensive care unit (ICU)-like algorithms (n = 7), intravenous fluids plus levofloxacin (n = 2), or a control group (n = 5). The primary outcome measure was duration of survival, and secondary outcomes included changes in clinical laboratory values. RESULTS: Duration of survival was not significantly different between the pooled ICU-like algorithm and control groups (8.2 vs 6.9 days of survival; hazard ratio; 0.50; P = .25). Norepinephrine was effective in transiently maintaining baseline blood pressure. NHPs treated with ICU-like algorithms had delayed onset of liver and kidney injury. CONCLUSIONS: While an obvious survival difference was not observed with ICU-like care, clinical observations from this model may aid in EVD supportive care NHP model refinement.


Assuntos
Cuidados Críticos , Doença pelo Vírus Ebola , Unidades de Terapia Intensiva , Animais , Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola/terapia , Macaca mulatta , Primatas , Estudos Retrospectivos
17.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32888050

RESUMO

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais/classificação , Terminologia como Assunto
18.
bioRxiv ; 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32793904

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC 50 range, 2.0 to 31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.

19.
Emerg Infect Dis ; 26(7): 1553-1556, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568043

RESUMO

A 46-year-old patient with previously documented Ebola virus persistence in his ocular fluid, associated with severe panuveitis, developed a visually significant cataract. A multidisciplinary approach was taken to prevent and control infection. Ebola virus persistence was assessed before and during the operation to provide safe, vision-restorative phacoemulsification surgery.


Assuntos
Catarata , Ebolavirus , Doença pelo Vírus Ebola , Olho , Humanos , Pessoa de Meia-Idade , Sobreviventes
20.
PLoS Negl Trop Dis ; 14(6): e0008107, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569276

RESUMO

Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.


Assuntos
Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Doenças Virais Sexualmente Transmissíveis/transmissão , Doenças Transmitidas por Vetores/transmissão , Infecção por Zika virus/transmissão , Animais , Chlorocebus aethiops , Culicidae , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...