Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Technol ; 56(19): 13975-13984, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103595

RESUMO

Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe-microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 µm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 µm × 35 µm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 µm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas putida , Fatores Quimiotáticos/metabolismo , Quimiotaxia , Dimetilpolisiloxanos/metabolismo , Hexaclorocicloexano/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Porosidade , Pseudomonas putida/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Environ Pollut ; 255(Pt 1): 113184, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541819

RESUMO

Assessing the ecological risk of combined pollution, especially from a holistic perspective with the consideration of the overarching functions of soil ecosystem, is crucial and beneficial to the improvement of ecological risk assessment (ERA) framework. In this study, four soils with similar physicochemical properties but contrasting heavy metals contamination levels were selected to explore changes in the integrated functional sensitivity (MSI), resistance (MRS) and resilience (MRL) of soil microbial communities subjected to herbicide siduron, based on which the ecological risk of the accumulation of siduron in the four studied soils were evaluated. The results suggested that the microbial biomass carbon, activity of denitrification enzyme and nitrogenase were indicative of MSI and MRS, and the same three parameters plus soil basal respiration were indicative of MRL. Significant dose-effect relationships between siduron residues in soils and MSI, MRS and MRL under combined pollution were observed. Heavy metal polluted soils showed higher sensitivity and lower resistance to the additional disturbance of herbicide siduron due to the lower microbial biomass, while the resilience of heavy metal polluted soils was much higher due to the pre-adaption to the chemical stresses. The quantifiable indicator microbial functional stability was incorporated in the framework of ERA and the results showed that the accumulation of siduron in the studied soils could exhibit potential harm to the integrated functional stability of soil microbial community. Thus, this work provides insights into the application of integrated function of soil microbial community into the framework of ERA.


Assuntos
Herbicidas/toxicidade , Compostos de Fenilureia/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Biomassa , Ecossistema , Metais Pesados/toxicidade , Medição de Risco
6.
Glob Chang Biol ; 25(7): 2205-2208, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30963666

RESUMO

The goal of this comment is to show that the "aggregate reactor" framework recently proposed in an article published in this journal is severely limited by two kinds of indeterminacy. The first is related to the size of aggregates, which is not defined precisely. The second issue is with the impossibility to replicate boundary conditions that are identical to what chunks of soils would have experienced in their natural state. We suggest that the study of GHG release in undisturbed soil samples is a better way to proceed forward.


Assuntos
Gases de Efeito Estufa , Atmosfera , Metano/análise , Solo
7.
Chem Cent J ; 12(1): 132, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30519801

RESUMO

In spite of the development of new measurement techniques in recent years, the rapid and accurate speciation of thallium in environmental aqueous samples remains a challenge. In this context, a novel method of solid phase extraction (SPE), involving the anion exchange resin AG1-X8, is proposed to separate Tl(I) and Tl(III). In the presence of diethylene triamine pentacetate acid (DTPA), Tl(III) and Tl(I) can be separated by selective adsorption of Tl(III)-DTPA onto the resin, Tl(III) is then eluted by a solution of HCl with SO2. The validity of this method was confirmed by assays of standard solutions of Tl(I) and Tl(III). The proposed method is shown to have an outstanding performance even in solutions with a high ratio of Tl(I)/Tl(III), and can be applied to aqueous samples with a high concentration of other electrolytes, which could interfere with the measurement. Portable equipment and reagents make it possible to use the proposed method routinely in the field.

8.
Front Microbiol ; 9: 1929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210462

RESUMO

Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.

9.
Front Microbiol ; 9: 1583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108552

RESUMO

There is still no satisfactory understanding of the factors that enable soil microbial populations to be as highly biodiverse as they are. The present article explores in silico the hypothesis that the heterogeneous distribution of soil organic matter, in addition to the spatial connectivity of the soil moisture, might account for the observed microbial biodiversity in soils. A multi-species, individual-based, pore-scale model is developed and parameterized with data from 3 Arthrobacter sp. strains, known to be, respectively, competitive, versatile, and poorly competitive. In the simulations, bacteria of each strain are distributed in a 3D computed tomography (CT) image of a real soil and three water saturation levels (100, 50, and 25%) and spatial heterogeneity levels (high, intermediate, and low) in the distribution of the soil organic matter are considered. High and intermediate heterogeneity levels assume, respectively, an amount of particulate organic matter (POM) distributed in a single (high heterogeneity) or in four (intermediate heterogeneity) randomly placed fragments. POM is hydrolyzed at a constant rate following a first-order kinetic, and continuously delivers dissolved organic carbon (DOC) into the liquid phase, where it is then taken up by bacteria. The low heterogeneity level assumes that the food source is available from the start as DOC. Unlike the relative abundances of the 3 strains, the total bacterial biomass and respiration are similar under the high and intermediate resource heterogeneity schemes. The key result of the simulations is that spatial heterogeneity in the distribution of organic matter influences the maintenance of bacterial biodiversity. The least competing strain, which does not reach noticeable growth for the low and intermediate spatial heterogeneities of resource distribution, can grow appreciably and even become more abundant than the other strains in the absence of direct competition, if the placement of the resource is favorable. For geodesic distances exceeding 5 mm, microbial colonies cannot grow. These conclusions are conditioned by assumptions made in the model, yet they suggest that microscale factors need to be considered to better understand the root causes of the high biodiversity of soils.

10.
Environ Pollut ; 238: 140-149, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29554562

RESUMO

Soil contamination due to atmospheric deposition of metals originating from smelters is a global environmental problem. A common problem associated with this contamination is the discrimination between anthropic and natural contributions to soil metal concentrations: In this context, we investigated the characteristics of soil contamination in the surrounding area of a world class smelter. We attempted to combine several approaches in order to identify sources of metals in soils and to examine contamination characteristics, such as pollution level, range, and spatial distribution. Soil samples were collected at 100 sites during a field survey and total concentrations of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn were analyzed. We conducted a multivariate statistical analysis, and also examined the spatial distribution by 1) identifying the horizontal variation of metals according to particular wind directions and distance from the smelter and 2) drawing a distribution map by means of a GIS tool. As, Cd, Cu, Hg, Pb, and Zn in the soil were found to originate from smelter emissions, and As also originated from other sources such as abandoned mines and waste landfill. Among anthropogenic metals, the horizontal distribution of Cd, Hg, Pb, and Zn according to the downwind direction and distance from the smelter showed a typical feature of atmospheric deposition (regression model: y = y0 + αe-ßx). Lithogenic Fe was used as an indicator, and it revealed the continuous input and accumulation of these four elements in the surrounding soils. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by metals around smelters.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Agricultura , China , Mercúrio/análise , Metalurgia , Mineração , Análise Multivariada , República da Coreia , Zinco/análise
11.
Sci Total Environ ; 630: 146-153, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477112

RESUMO

Thallium (Tl) is a toxic trace metal, whose geochemical behavior and biological effects are closely controlled by its chemical speciation in the environment. However, little tends to be known about this speciation of Tl in soil and plant systems that directly affect the safety of food supplies. In this context, the objective of the present study was to elaborate an efficient method to separate and detect Tl(I) and Tl(III) species for soil and plant samples. This method involves the selective adsorption of Tl(I) on microcolumns filled with immobilized oxine, in the presence of DTPA (diethylenetriaminepentaacetic acid), followed by DTPA-enhanced ultrasonic and heating-induced extraction, coupled with ICP-MS detection. The method was characterized by a LOD of 0.037 µg/L for Tl(I) and 0.18 µg/L for Tl(III) in 10  mL samples. With this method, a second objective of the research was to assess the speciation of Tl in pot and field soils and in green cabbage crops. Experimental results suggest that DTPA extracted Tl was mainly present as Tl(I) in soils (>95%). Tl in hyperaccumulator plant green cabbage was also mainly present as Tl(I) (>90%). With respect to Tl uptake in plants, this study provides direct evidence that green cabbage mainly takes up Tl(I) from soil, and transports it into the aboveground organs. In soils, Tl(III) is reduced to Tl(I) even at the surface where the chemical environment promotes oxidation. This observation is conducive to understanding the mechanisms of Tl isotope fractionation in the soil-plant system. Based on geochemical fraction studies, the reducible fraction was the main source of Tl getting accumulated by plants. These results indicate that the improved analytical method presented in this study offers an economical, simple, fast, and sensitive approach for the separation of Tl species present in soils at trace levels.


Assuntos
Brassica/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Tálio/análise
13.
Int J Nurs Stud ; 64: 96-97, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27728858
14.
PLoS One ; 10(9): e0137205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26372473

RESUMO

There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented in this study can be easily adapted and applied to other types of data such as bacterial or fungal population densities for the 3D characterization of microbial distribution.


Assuntos
Imageamento Tridimensional , Solo/química , Espectrometria por Raios X , Tomografia Computadorizada por Raios X , Modelos Teóricos , Análise de Regressão
15.
J Hazard Mater ; 285: 137-9, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25497026

RESUMO

In recent years, several authors have suggested repeatedly that visible and near-infrared reflectance spectroscopy (VNIRS) could be an advantageous alternative to traditional wet-laboratory methods for the measurement of heavy metal concentrations in soils. In this comment, we argue that, on the contrary, VNIRS is of limited practical use in such a context and should not serve as an excuse to get rid of direly needed laboratory facilities. The key reasons are that VNIRS spectra are irremediably insensitive to the presence of heavy metals, that the effect of soil moisture and surface rugosity on VNIR sensing still has to be satisfactorily accounted for, and finally that VNIRS probes an extremely thin layer of soil at the surface, which is generally irrelevant in terms of plant growth. Given these intrinsic limitations, it seems indicated to put the persistent VNIRS myth to rest, and to explore other measurement techniques that may have more potential.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Espectroscopia de Luz Próxima ao Infravermelho
16.
Ecotoxicol Environ Saf ; 112: 122-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463862

RESUMO

In various parts of the world, high cadmium (Cd) concentrations in environment are not related to anthropogenic contamination but have natural origins. Less is known about health risks that arise under these conditions. This study aimed to discuss the pollution of Cd with natural sources, and to investigate the concentration of Cd in food crops and the urine of inhabitants in an area of southwestern China. The results showed that the arable soils are moderately contaminated by Cd (I(geo)=1.51) relative to the local background, with a high ecological risk (Er=218). The chemical fractions of Cd in soils with natural sources are probably controlled by parent materials and mostly in residual phase. The average Cd concentrations were 0.68 mg kg(-1) (fresh weight) in local vegetables, 0.04 mg kg(-1) in rice, and 0.14 µg L(-1) in water. Leafy vegetable tends to accumulate more Cd than the other crops. The calculated Target Hazard Quotient (THQ) had a much higher value (4.33) for Cd, suggesting that Cd represents a significant potential risk to the local population. The urinary Cd concentrations (mean at 3.92 µg L(-1) for male and 4.85 µg L(-1) for female) of inhabitants in the study area were significantly higher (p<0.05) than those from the control area (mean at 0.8 µg L(-1) for male and 0.42 µg L(-1) for female). Male and female test subjects had similar urinary Cd levels (p>0.05), but age seemed to lead to an increase in Cd in the urine. These findings show that naturally-occurring Cd in local soils is taken up appreciably by local food crops, and that dietary exposure of Cd through vegetable ingestion is a major exposure pathway for local populations, and a potential risk to public health in the study area.


Assuntos
Cádmio/toxicidade , Contaminação de Alimentos/análise , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/toxicidade , Adulto , Cádmio/metabolismo , Cádmio/urina , China , Grão Comestível/metabolismo , Monitoramento Ambiental , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Medição de Risco , Poluentes do Solo/metabolismo , Poluentes do Solo/urina , Verduras/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/urina , Adulto Jovem
18.
J Phys Chem B ; 116(22): 6233-49, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22540276

RESUMO

We simulate spin relaxation processes, which may be measured by either continuous wave or pulsed magnetic resonance techniques, using trajectory-based simulation methodologies. The spin-lattice relaxation rates are extracted numerically from the relaxation simulations. The rates obtained from the numerical fitting of the relaxation curves are compared to those obtained by direct simulation from the relaxation Bloch-Wangsness-Abragam-Redfield theory (BWART). We have restricted our study to anisotropic rigid-body rotational processes, and to the chemical shift anisotropy (CSA) and a single spin-spin dipolar (END) coupling mechanisms. Examples using electron paramagnetic resonance (EPR) nitroxide and nuclear magnetic resonance (NMR) deuterium quadrupolar systems are provided. The objective is to compare those rates obtained by numerical simulations with the rates obtained by BWART. There is excellent agreement between the simulated and BWART rates for a Hamiltonian describing a single spin (an electron) interacting with the bath through the chemical shift anisotropy (CSA) mechanism undergoing anisotropic rotational diffusion. In contrast, when the Hamiltonian contains both the chemical shift anisotropy (CSA) and the spin-spin dipolar (END) mechanisms, the decay rate of a single exponential fit of the simulated spin-lattice relaxation rate is up to a factor of 0.2 smaller than that predicted by BWART. When the relaxation curves are fit to a double exponential, the slow and fast rates extracted from the decay curves bound the BWART prediction. An extended BWART theory, in the literature, includes the need for multiple relaxation rates and indicates that the multiexponential decay is due to the combined effects of direct and cross-relaxation mechanisms.


Assuntos
Simulação de Dinâmica Molecular , Anisotropia , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...