Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Med Chem ; 67(5): 3339-3357, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38408027

RESUMO

Triple-negative breast cancer (TNBC) is a deadly breast cancer with a poor prognosis. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, is abnormally highly expressed in TNBC. Overexpressed PKM2 amplifies glucose uptake, enhances lactate production, and suppresses autophagy, thereby expediting the progression of oncogenic processes. A high mortality rate demands novel chemotherapeutic regimens at once. Herein, we report the rational development of an imidazopyridine-based thiazole derivative 7d as an anticancer agent inhibiting PKM2. Nanomolar range PKM2 inhibitors with favorable drug-like properties emerged through enzyme assays. Experiments on two-dimensional (2D)/three-dimensional (3D) cell cultures, lactate release assay, surface plasmon resonance (SPR), and quantitative real-time polymerase chain reaction (qRT-PCR) validated 7d preclinically. In vivo, 7d outperformed lapatinib in tumor regression. This investigation introduces a lead-based approach characterized by its clear-cut chemistry and robust efficacy in designing an exceptionally potent inhibitor targeting PKM2, with a focus on combating TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Piruvato Quinase , Lapatinib/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lactatos/farmacologia , Linhagem Celular Tumoral , Glicólise , Proliferação de Células
2.
J Biomol Struct Dyn ; : 1-16, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37440426

RESUMO

The diversified eating habits and religious culture of Indian population may be one of the reasons they largely contribute to the global diabetes burden. In the present investigation, an in-silico approach was carried out to explore hub genes in the Indian population with Type 2 Diabetes Mellitus (T2DM) that are scantily reported in the GWAS catalogue and probable potential anti-diabetic drugs from plants. This computational approach unwrapped LEP (leptin) as the hub gene among 170 genes analyzed with 14 non-synonymous single nucleotide polymorphisms (nsSNPs) with MAF < 0.01. The mutation of the LEP gene leads to a decrease in leptin concentration, which increases the risk of obesity and T2DM. According to the DUET webserver, 11 of 14 mutations examined were found to destabilize the LEP protein. Among 14, four barely reported LEP variants rs781301976 (I45N), rs776443424 (S52F), rs200915360 (D76Y), and rs1191666811 (D162N) were unzipped to be associated with T2DM, which may be the probable potential drug targets. The virtual screening revealed Vescalagin as having the highest binding energy among 336 natural compounds. Molecular docking of Vescalagin depicted higher binding energy (-9.0 kcal/mol) against mutated LEP [rs200915360 (D76Y)] compared to wild (-8.9 kcal/mol) and LEP-Metformin complexes. The trajectory analysis of MD simulations revealed that Vescalagin was more effective than Metformin in stabilizing the system. The present study suggests that the associations of the investigated nsSNPs in LEP [rs200915360 (D76Y)] and others can be key factors in the predominant role of T2DM morbidity in the Indian population that can be used as potential markers and drug targets for T2DM therapeutics.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...