Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Genet ; 103(3): 277-287, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36349847

RESUMO

46,XY gonadal dysgenesis (GD) is a Disorder/Difference of Sex Development (DSD) that can present with phenotypes ranging from ambiguous genitalia to complete male-to-female sex reversal. Around 50% of 46,XY DSD cases receive a molecular diagnosis. In mice, Fibroblast growth factor 9 (FGF9) is an important component of the male sex-determining pathway. Two FGF9 variants reported to date disrupt testis development in mice, but not in humans. Here, we describe a female patient with 46,XY GD harbouring the rare FGF9 variant (missense mutation), NM_002010.2:c.583G > A;p.(Asp195Asn) (D195N). By biochemical and cell-based approaches, the D195N variant disrupts FGF9 protein homodimerisation and FGF9-heparin-binding, and reduces both Sertoli cell proliferation and Wnt4 repression. XY Fgf9D195N/D195N foetal mice show a transient disruption of testicular cord development, while XY Fgf9D195N/- foetal mice show partial male-to-female gonadal sex reversal. In the general population, the D195N variant occurs at an allele frequency of 2.4 × 10-5 , suggesting an oligogenic basis for the patient's DSD. Exome analysis of the patient reveals several known and novel variants in genes expressed in human foetal Sertoli cells at the time of sex determination. Taken together, our results indicate that disruption of FGF9 homodimerization impairs testis determination in mice and, potentially, also in humans in combination with other variants.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Disgenesia Gonadal 46 XY , Humanos , Masculino , Feminino , Camundongos , Animais , Dimerização , Fator 9 de Crescimento de Fibroblastos/genética , Testículo , Gônadas , Disgenesia Gonadal 46 XY/genética
2.
Genet Med ; 22(12): 1976-1985, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32719395

RESUMO

PURPOSE: To explore parental experiences of ultrarapid genomic testing for their critically unwell infants and children. METHODS: Parents of critically unwell children who participated in a national ultrarapid genomic diagnosis program were surveyed >12 weeks after genomic results return. Surveys consisted of custom questions and validated scales, including the Decision Regret Scale and Genomics Outcome Scale. RESULTS: With 96 survey invitations sent, the response rate was 57% (n = 55). Most parents reported receiving enough information during pretest (n = 50, 94%) and post-test (n = 44, 83%) counseling. Perceptions varied regarding benefits of testing, however most parents reported no or mild decision regret (n = 45, 82%). The majority of parents (31/52, 60%) were extremely concerned about the condition recurring in future children, regardless of actual or perceived recurrence risk. Parents whose child received a diagnostic result reported higher empowerment. CONCLUSION: This study provides valuable insight into parental experiences of ultrarapid genomic testing in critically unwell children, including decision regret, empowerment, and post-test reproductive planning, to inform design and delivery of rapid diagnosis programs. The findings suggest considerations for pre- and post-test counseling that may influence parental experiences during the testing process and beyond, such as the importance of realistically conveying the likelihood for clinical and/or personal utility.


Assuntos
Emoções , Pais , Criança , Aconselhamento , Testes Genéticos , Humanos , Lactente , Inquéritos e Questionários
3.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573669

RESUMO

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Assuntos
Estado Terminal , Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Austrália , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Doenças Genéticas Inatas/diagnóstico , Humanos , Lactente , Recém-Nascido , Masculino , Programas Nacionais de Saúde , Estudos Prospectivos , Fatores de Tempo
4.
Hum Mutat ; 39(1): 124-139, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29027299

RESUMO

Variants in the NR5A1 gene encoding SF1 have been described in a diverse spectrum of disorders of sex development (DSD). Recently, we reported the use of a targeted gene panel for DSD where we identified 15 individuals with a variant in NR5A1, nine of which are novel. Here, we examine the functional effect of these changes in relation to the patient phenotype. All novel variants tested had reduced trans-activational activity, while several had altered protein level, localization, or conformation. In addition, we found evidence of new roles for SF1 protein domains including a region within the ligand binding domain that appears to contribute to SF1 regulation of Müllerian development. There was little correlation between the severity of the phenotype and the nature of the NR5A1 variant. We report two familial cases of NR5A1 deficiency with evidence of variable expressivity; we also report on individuals with oligogenic inheritance. Finally, we found that the nature of the NR5A1 variant does not inform patient outcomes (including pubertal androgenization and malignancy risk). This study adds nine novel pathogenic NR5A1 variants to the pool of diagnostic variants. It highlights a greater need for understanding the complexity of SF1 function and the additional factors that contribute.


Assuntos
Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Estudos de Associação Genética , Variação Genética , Fenótipo , Fator Esteroidogênico 1/genética , Alelos , Sequência de Aminoácidos , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Transtorno 46,XY do Desenvolvimento Sexual/genética , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Masculino , Modelos Anatômicos , Mutação , Conformação Proteica , Domínios Proteicos/genética , Sítios de Splice de RNA , Análise de Sequência de DNA , Fator Esteroidogênico 1/química
5.
J Genet Couns ; 26(1): 159-172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27443149

RESUMO

The role of genetic counselors in prenatal paternity testing has not been widely studied in the genetic counseling literature. In South Australia, the genetic counselors of the State's public sector clinical genetics service are the primary contact point for women seeking information and testing, also coordinating the testing process. This has provided the opportunity to review all prenatal paternity testing performed in the State over a 13 year period and to consider the role played by the genetic counselor. We explored the reasons why women requested prenatal paternity testing and whether the genetic counselor was an appropriate health professional to facilitate this testing for women. The study had two parts, an audit of the clinical genetics files of 160 women who requested prenatal paternity testing between March 2001 and March 2014, and qualitative interviews of genetic counselors, clinical geneticists, obstetricians and social workers with involvement in this area. The audit determined that in 69.9 % of cases the long-term partner was the father of the pregnancy, for 23.7 % the short-term or other partner was the father and for 6.4 % the paternity results were not known by the genetic counselor. For 45.5 % of women whose long-term partner was excluded as the father, the women chose to have a termination of pregnancy. The results of the qualitative interviews yielded five major themes: accessibility of testing, role of the genetic counselor, social and relationship issues, decision making in pregnancy and emotional issues. We conclude that the genetic counselor is an appropriate health professional to facilitate prenatal paternity testing. Genetic counselors did not view their role as significantly different from a request for prenatal testing for another indication.


Assuntos
Conselheiros , Tomada de Decisões , Aconselhamento Genético , Mães/psicologia , Paternidade , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Austrália do Sul , Adulto Jovem
6.
Genome Biol ; 17(1): 243, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899157

RESUMO

BACKGROUND: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. RESULTS: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. CONCLUSIONS: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes.


Assuntos
Aberrações Cromossômicas , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Sequenciamento de Nucleotídeos em Larga Escala , Estudos de Coortes , Transtornos do Desenvolvimento Sexual/patologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Gônadas/crescimento & desenvolvimento , Gônadas/patologia , Humanos , Masculino , Mutação/genética , Ovário/crescimento & desenvolvimento , Ovário/patologia , Linhagem , Fenótipo , Testículo/crescimento & desenvolvimento , Testículo/patologia
7.
Hum Mol Genet ; 24(25): 7171-81, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26443594

RESUMO

Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.


Assuntos
Antígenos Nucleares/genética , Deficiência Intelectual/genética , Proteínas de Ciclo Celular , Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA/genética , Humanos , Masculino , Comportamento Problema , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...