Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Virchows Arch ; 484(4): 597-608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570364

RESUMO

Assessing programmed death ligand 1 (PD-L1) expression on tumor cells (TCs) using Food and Drug Administration-approved, validated immunoassays can guide the use of immune checkpoint inhibitor (ICI) therapy in cancer treatment. However, substantial interobserver variability has been reported using these immunoassays. Artificial intelligence (AI) has the potential to accurately measure biomarker expression in tissue samples, but its reliability and comparability to standard manual scoring remain to be evaluated. This multinational study sought to compare the %TC scoring of PD-L1 expression in advanced urothelial carcinoma, assessed by either an AI Measurement Model (AIM-PD-L1) or expert pathologists. The concordance among pathologists and between pathologists and AIM-PD-L1 was determined. The positivity rate of ≥ 1%TC PD-L1 was between 20-30% for 8/10 pathologists, and the degree of agreement and scoring distribution for among pathologists and between pathologists and AIM-PD-L1 was similar both scored as a continuous variable or using the pre-defined cutoff. Numerically higher score variation was observed with the 22C3 assay than with the 28-8 assay. A 2-h training module on the 28-8 assay did not significantly impact manual assessment. Cases exhibiting significantly higher variability in the assessment of PD-L1 expression (mean absolute deviation > 10) were found to have patterns of PD-L1 staining that were more challenging to interpret. An improved understanding of sources of manual scoring variability can be applied to PD-L1 expression analysis in the clinical setting. In the future, the application of AI algorithms could serve as a valuable reference guide for pathologists while scoring PD-L1.


Assuntos
Inteligência Artificial , Antígeno B7-H1 , Biomarcadores Tumorais , Variações Dependentes do Observador , Humanos , Antígeno B7-H1/análise , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Reprodutibilidade dos Testes , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/diagnóstico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/patologia , Neoplasias Urológicas/metabolismo , Imuno-Histoquímica/métodos , Patologistas , Urotélio/patologia , Urotélio/metabolismo
2.
NPJ Precis Oncol ; 7(1): 52, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264091

RESUMO

The tumor immune composition influences prognosis and treatment sensitivity in lung cancer. The presence of effective adaptive immune responses is associated with increased clinical benefit after immune checkpoint blockers. Conversely, immunotherapy resistance can occur as a consequence of local T-cell exhaustion/dysfunction and upregulation of immunosuppressive signals and regulatory cells. Consequently, merely measuring the amount of tumor-infiltrating lymphocytes (TILs) may not accurately reflect the complexity of tumor-immune interactions and T-cell functional states and may not be valuable as a treatment-specific biomarker. In this work, we investigate an immune-related biomarker (PhenoTIL) and its value in associating with treatment-specific outcomes in non-small cell lung cancer (NSCLC). PhenoTIL is a novel computational pathology approach that uses machine learning to capture spatial interplay and infer functional features of immune cell niches associated with tumor rejection and patient outcomes. PhenoTIL's advantage is the computational characterization of the tumor immune microenvironment extracted from H&E-stained preparations. Association with clinical outcome and major non-small cell lung cancer (NSCLC) histology variants was studied in baseline tumor specimens from 1,774 lung cancer patients treated with immunotherapy and/or chemotherapy, including the clinical trial Checkmate 057 (NCT01673867).

3.
Mod Pathol ; 35(11): 1529-1539, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35840720

RESUMO

Assessment of programmed death ligand 1 (PD-L1) expression by immunohistochemistry (IHC) has emerged as an important predictive biomarker across multiple tumor types. However, manual quantitation of PD-L1 positivity can be difficult and leads to substantial inter-observer variability. Although the development of artificial intelligence (AI) algorithms may mitigate some of the challenges associated with manual assessment and improve the accuracy of PD-L1 expression scoring, use of AI-based approaches to oncology biomarker scoring and drug development has been sparse, primarily due to the lack of large-scale clinical validation studies across multiple cohorts and tumor types. We developed AI-powered algorithms to evaluate PD-L1 expression on tumor cells by IHC and compared it with manual IHC scoring in urothelial carcinoma, non-small cell lung cancer, melanoma, and squamous cell carcinoma of the head and neck (prospectively determined during the phase II and III CheckMate clinical trials). 1,746 slides were retrospectively analyzed, the largest investigation of digital pathology algorithms on clinical trial datasets performed to date. AI-powered quantification of PD-L1 expression on tumor cells identified more PD-L1-positive samples compared with manual scoring at cutoffs of ≥1% and ≥5% in most tumor types. Additionally, similar improvements in response and survival were observed in patients identified as PD-L1-positive compared with PD-L1-negative using both AI-powered and manual methods, while improved associations with survival were observed in patients with certain tumor types identified as PD-L1-positive using AI-powered scoring only. Our study demonstrates the potential for implementation of digital pathology-based methods in future clinical practice to identify more patients who would benefit from treatment with immuno-oncology therapy compared with current guidelines using manual assessment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células de Transição , Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Humanos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Nivolumabe/uso terapêutico , Ipilimumab , Inteligência Artificial , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/metabolismo
4.
NPJ Precis Oncol ; 6(1): 33, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661148

RESUMO

Despite known histological, biological, and clinical differences between lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), relatively little is known about the spatial differences in their corresponding immune contextures. Our study of over 1000 LUAD and LUSC tumors revealed that computationally derived patterns of tumor-infiltrating lymphocytes (TILs) on H&E images were different between LUAD (N = 421) and LUSC (N = 438), with TIL density being prognostic of overall survival in LUAD and spatial arrangement being more prognostically relevant in LUSC. In addition, the LUAD-specific TIL signature was associated with OS in an external validation set of 100 NSCLC treated with more than six different neoadjuvant chemotherapy regimens, and predictive of response to therapy in the clinical trial CA209-057 (n = 303). In LUAD, the prognostic TIL signature was primarily comprised of CD4+ T and CD8+ T cells, whereas in LUSC, the immune patterns were comprised of CD4+ T, CD8+ T, and CD20+ B cells. In both subtypes, prognostic TIL features were associated with transcriptomics-derived immune scores and biological pathways implicated in immune recognition, response, and evasion. Our results suggest the need for histologic subtype-specific TIL-based models for stratifying survival risk and predicting response to therapy. Our findings suggest that predictive models for response to therapy will need to account for the unique morphologic and molecular immune patterns as a function of histologic subtype of NSCLC.

5.
Mod Pathol ; 35(1): 23-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611303

RESUMO

Traditional pathology approaches have played an integral role in the delivery of diagnosis, semi-quantitative or qualitative assessment of protein expression, and classification of disease. Technological advances and the increased focus on precision medicine have recently paved the way for the development of digital pathology-based approaches for quantitative pathologic assessments, namely whole slide imaging and artificial intelligence (AI)-based solutions, allowing us to explore and extract information beyond human visual perception. Within the field of immuno-oncology, the application of such methodologies in drug development and translational research have created invaluable opportunities for deciphering complex pathophysiology and the discovery of novel biomarkers and drug targets. With an increasing number of treatment options available for any given disease, practitioners face the growing challenge of selecting the most appropriate treatment for each patient. The ever-increasing utilization of AI-based approaches substantially expands our understanding of the tumor microenvironment, with digital approaches to patient stratification and selection for diagnostic assays supporting the identification of the optimal treatment regimen based on patient profiles. This review provides an overview of the opportunities and limitations around implementing AI-based methods in biomarker discovery and patient selection and discusses how advances in digital pathology and AI should be considered in the current landscape of translational medicine, touching on challenges this technology may face if adopted in clinical settings. The traditional role of pathologists in delivering accurate diagnoses or assessing biomarkers for companion diagnostics may be enhanced in precision, reproducibility, and scale by AI-powered analysis tools.


Assuntos
Inteligência Artificial/tendências , Patologia/tendências , Ciência Translacional Biomédica/métodos , Algoritmos , Biomarcadores/análise , Humanos , Padrões de Prática Médica/tendências
6.
Nat Med ; 26(5): 688-692, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405062

RESUMO

Serum interleukin-8 (IL-8) levels and tumor neutrophil infiltration are associated with worse prognosis in advanced cancers. Here, using a large-scale retrospective analysis, we show that elevated baseline serum IL-8 levels are associated with poor outcome in patients (n = 1,344) with advanced cancers treated with nivolumab and/or ipilimumab, everolimus or docetaxel in phase 3 clinical trials, revealing the importance of assessing serum IL-8 levels in identifying unfavorable tumor immunobiology and as an independent biomarker in patients receiving immune-checkpoint inhibitors.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Farmacológicos/sangue , Interleucina-8/sangue , Neoplasias/tratamento farmacológico , Neutrófilos/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/sangue , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Estudos de Coortes , Feminino , Humanos , Masculino , Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/mortalidade , Infiltração de Neutrófilos/efeitos dos fármacos , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Falha de Tratamento , Microambiente Tumoral/imunologia , Regulação para Cima
7.
Cancer Treat Res ; 180: 51-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32215866

RESUMO

The premise of this book is the importance of the tumor microenvironment (TME). Until recently, most research on and clinical attention to cancer biology, diagnosis, and prognosis were focused on the malignant (or premalignant) cellular compartment that could be readily appreciated using standard morphology-based imaging.


Assuntos
Neoplasias/diagnóstico por imagem , Microambiente Tumoral , Humanos
8.
J Pathol Inform ; 2: 38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21969919

RESUMO

CONTEXT: Whole slide imaging (WSI) for digital pathology involves the rapid automated acquisition of multiple high-power fields from a microscope slide containing a tissue specimen. Capturing each field in the correct focal plane is essential to create high-quality digital images. Others have described a novel focusing method which reduces the number of focal planes required to generate accurate focus. However, this method was not applied dynamically in an automated WSI system under continuous motion. AIMS: This report measures the accuracy of this method when applied in a rapid continuous scan mode using a dual sensor WSI system with interleaved acquisition of images. METHODS: We acquired over 400 tiles in a "stop and go" scan mode, surveying the entire z depth in each tile and used this as ground truth. We compared this ground truth focal height to the focal height determined using a rapid 3-point focus algorithm applied dynamically in a continuous scanning mode. RESULTS: Our data showed the average focal height error of 0.30 (±0.27) µm compared to ground truth, which is well within the system's depth of field. On a tile by tile assessment, approximately 95% of the tiles were within the system's depth of field. Further, this method was six times faster than acquiring tiles compared to the same method in a non-continuous scan mode. CONCLUSIONS: The data indicates that the method employed can yield a significant improvement in scan speed while maintaining highly accurate autofocusing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...