Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycorrhiza ; 33(5-6): 345-358, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37851276

RESUMO

Arbuscular mycorrhizal fungi (AMF) establish symbioses with the major cereal crops, providing plants with increased access to nutrients while enhancing their tolerance to toxic heavy metals. However, not all plant varieties benefit equally from this association. In this study, we used quantitative trait loci (QTL) mapping to evaluate the combined effect of host genotypic variation (G) and AMF across 141 genotypes on the concentration of 20 mineral elements in the leaves and grain of field grown maize (Zea mays spp. mays). Our mapping design included selective incorporation of a castor AMF-incompatibility mutation, allowing estimation of AMF, QTL and QTLxAMF effects by comparison of mycorrhizal and non-mycorrhizal plants. Overall, AMF compatibility was associated with higher concentrations of boron (B), copper (Cu), molybdenum (Mo), phosphorus (P), selenium (Se) and zinc (Zn) and lower concentrations of arsenic (As), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K) and strontium (Sr). In addition to effects on individual elements, pairwise correlation matrices for element concentration differed between mycorrhizal and non-mycorrhizal plants. We mapped 22 element QTLs, including 18 associated with QTLxAMF effects that indicate plant genotype-specific differences in the impact of AMF on the host ionome. Although there is considerable interest in AMF as biofertilizers, it remains challenging to estimate the impact of AMF in the field. Our design illustrates an effective approach for field evaluation of AMF effects. Furthermore, we demonstrate the capacity of the ionome to reveal host genotype-specific variation in the impact of AMF on plant nutrition.


Assuntos
Micorrizas , Micorrizas/genética , Zea mays/microbiologia , Raízes de Plantas/microbiologia , Simbiose , Genótipo
2.
Proc Natl Acad Sci U S A ; 119(40): e2212199119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161933

RESUMO

Plants typically orient their organs with respect to the Earth's gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana. Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.


Assuntos
Arabidopsis , Gravitropismo , Arabidopsis/genética , Celulose , Gravitropismo/genética , Fosfatidilcolinas , Raízes de Plantas/genética , Polímeros , Locos de Características Quantitativas , Fatores de Transcrição/genética , Zea mays/genética
3.
Plant Direct ; 6(3): e390, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382116
5.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849806

RESUMO

Despite being one of the most consumed vegetables in the United States, the elemental profile of sweet corn (Zea mays L.) is limited in its dietary contributions. To address this through genetic improvement, a genome-wide association study was conducted for the concentrations of 15 elements in fresh kernels of a sweet corn association panel. In concordance with mapping results from mature maize kernels, we detected a probable pleiotropic association of zinc and iron concentrations with nicotianamine synthase5 (nas5), which purportedly encodes an enzyme involved in synthesis of the metal chelator nicotianamine. In addition, a pervasive association signal was identified for cadmium concentration within a recombination suppressed region on chromosome 2. The likely causal gene underlying this signal was heavy metal ATPase3 (hma3), whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in roots, whereby regulating zinc homeostasis and cadmium accumulation in grains. In our association panel, hma3 associated with cadmium but not zinc accumulation in fresh kernels. This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. Although less resolved association signals were detected for boron, nickel, and calcium, all 15 elements were shown to have moderate predictive abilities via whole-genome prediction. Collectively, these results help enhance our genomics-assisted breeding efforts centered on improving the elemental profile of fresh sweet corn kernels.


Assuntos
Cádmio , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Verduras , Zea mays/genética , Zinco
6.
G3 (Bethesda) ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34568927

RESUMO

Most plant species, including most crops, perform poorly in salt-affected soils because high sodium levels are cytotoxic and can disrupt the uptake of water and important nutrients. Halophytes are species that have evolved adaptations to overcome these challenges and may be a useful source of knowledge for salt tolerance mechanisms and genes that may be transferable to crop species. The salt content of saline habitats can vary dramatically by location, providing ample opportunity for different populations of halophytic species to adapt to their local salt concentrations; however, the extent of this variation, and the physiology and polymorphisms that drive it, remain poorly understood. Differential accumulation of inorganic elements between genotypes or populations may play an important role in local salinity adaptation. To test this, we investigated the relationships between population structure, tissue ion concentrations, and salt tolerance in 17 "fine-textured" genotypes of the halophytic turfgrass seashore paspalum (Paspalum vaginatum Swartz). A high-throughput ionomics pipeline was used to quantify the shoot concentration of 18 inorganic elements across three salinity treatments. We found a significant relationship between population structure and ion accumulation, with strong correlations between principal components derived from genetic and ionomic data. Additionally, genotypes with higher salt tolerance accumulated more K and Fe and less Ca than less tolerant genotypes. Together these results indicate that differences in ion accumulation between P. vaginatum populations may reflect locally adapted salt stress responses.


Assuntos
Paspalum , Tolerância ao Sal , Adaptação Fisiológica/genética , Salinidade , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética
7.
Plant Direct ; 5(9): e353, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34585058
8.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544133

RESUMO

With increased demand on freshwater resources for agriculture, it is imperative that more water-use efficient crops are developed. Leaf stable carbon isotope composition, δ13C, is a proxy for transpiration efficiency and a possible tool for breeders, but the underlying mechanisms effecting δ13C in C4 plants are not known. It has been suggested that differences in specific leaf area (SLA), which potentially reflects variation in internal CO2 diffusion, can impact leaf δ13C. Furthermore, although it is known that water movement is important for elemental uptake, it is not clear how manipulation of transpiration for increased water-use efficiency may impact nutrient accumulation. Here, we characterize the genetic architecture of leaf δ13C and test its relationship to SLA and the ionome in five populations of maize. Five significant QTL for leaf δ13C were identified, including novel QTL as well as some that were identified previously in maize kernels. One of the QTL regions contains an Erecta-like gene, the ortholog of which has been shown to regulate transpiration efficiency and leaf δ13C in Arabidopsis. QTL for δ13C were located in the same general chromosome region, but slightly shifted, when comparing data from two different years. Our data does not support a relationship between δ13C and SLA, and of the 19 elements analyzed, only a weak correlation between molybdenum and δ13C was detected. Together these data add to the genetic understanding of leaf δ13C in maize and suggest that improvements to plant water use may be possible without significantly influencing elemental homeostasis.


Assuntos
Carbono , Zea mays , Isótopos de Carbono , Folhas de Planta/genética , Água , Zea mays/genética
9.
Plant Direct ; 5(4): e00316, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33870032

RESUMO

Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re-envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.

10.
J Exp Bot ; 72(13): 5024-5037, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33893796

RESUMO

Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RILs) derived from a Setaria italica×Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning, and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple quantitative trait loci (QTL) were identified for stomatal density and canopy temperature, including co-located QTL on chromosomes 5 and 9. The direction of the additive effect of these QTL on chromosome 5 and 9 was in accordance with the positive phenotypic relationship between these two traits. This, along with prior experiments, suggests a common genetic architecture between stomatal patterning and WUE in controlled environments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to understand the physiology and genetics of WUE in C4 species.


Assuntos
Locos de Características Quantitativas , Setaria (Planta) , Secas , Fenótipo , Setaria (Planta)/genética , Temperatura , Água
11.
Mol Ecol ; 30(1): 148-161, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128807

RESUMO

In plant species, variation in levels of clonality, ploidy and interspecific hybridization can interact to influence geographic patterns of genetic diversity. These factors commonly vary in plants that specialize on saline habitats (halophytes) and may play a role in how they adapt to salinity variation across their range. One such halophyte is the turfgrass and emerging genomic model system seashore paspalum (Paspalum vaginatum Swartz). To investigate how clonal propagation, ploidy variation, and interspecific hybridization vary across ecotypes and local salinity levels in wild P. vaginatum, we employed genotyping-by-sequencing, cpDNA sequencing and flow cytometry in 218 accessions representing > 170 wild collections from throughout the coastal southern United States plus USDA germplasm. We found that the two morphologically distinct ecotypes of P. vaginatum differ in their adaptive strategies. The fine-textured ecotype is diploid and appears to reproduce in the wild both sexually and by clonal propagation; in contrast, the coarse-textured ecotype consists largely of clonally-propagating triploid and diploid genotypes. The coarse-textured ecotype appears to be derived from hybridization between fine-textured P. vaginatum and an unidentified Paspalum species. These clonally propagating hybrid genotypes are more broadly distributed than clonal fine-textured genotypes and may represent a transition to a more generalist adaptive strategy. Additionally, the triploid genotypes vary in whether they carry one or two copies of the P. vaginatum subgenome, indicating multiple evolutionary origins. This variation in subgenome composition shows associations with local ocean salinity levels across the sampled populations and may play a role in local adaptation.


Assuntos
Paspalum , Poliploidia , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal/genética
12.
Nat Biotechnol ; 38(10): 1203-1210, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33020633

RESUMO

Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4 grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly of S. viridis and de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a 'loss of shattering' trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR-Cas9 genome editing, we validated Less Shattering1 (SvLes1) as a gene whose product controls seed shattering. In S. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering allele SiLes1-TE (transposable element). This resource will enhance the utility of S. viridis for dissection of complex traits and biotechnological improvement of panicoid crops.


Assuntos
Genoma de Planta/genética , Milhetes/genética , Proteínas de Plantas/genética , Setaria (Planta)/genética , Alelos , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Elementos de DNA Transponíveis/genética , Domesticação , Grão Comestível/genética , Edição de Genes , Genótipo , Fenótipo , Filogenia
13.
Plant Direct ; 4(10): e00272, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33103043

RESUMO

Understanding the mechanisms underlying plants' adaptation to their environment will require knowledge of the genes and alleles underlying elemental composition. Modern genetics is capable of quickly, and cheaply indicating which regions of DNA are associated with particular phenotypes in question, but most genes remain poorly annotated, hindering the identification of candidate genes. To help identify candidate genes underlying elemental accumulations, we have created the known ionome gene (KIG) list: a curated collection of genes experimentally shown to change uptake, accumulation, and distribution of elements. We have also created an automated computational pipeline to generate lists of KIG orthologs in other plant species using the PhytoMine database. The current version of KIG consists of 176 known genes covering 5 species, 23 elements, and their 1588 orthologs in 10 species. Analysis of the known genes demonstrated that most were identified in the model plant Arabidopsis thaliana, and that transporter coding genes and genes altering the accumulation of iron and zinc are overrepresented in the current list.

16.
Curr Opin Plant Biol ; 54: 57-60, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32106014

RESUMO

In order to gain a molecular understanding of the genetic basis for plant traits, we need to be able to identify the underlying gene and the causal allele for genetic loci. This process usually involves a step where a researcher selects likely candidate genes from a list. The process of picking candidate genes is inherently prone to distortion due to human bias, and this is slowing down our research enterprise.

17.
Plant J ; 102(6): 1234-1248, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31968138

RESUMO

Genetic selection for whole-plant water use efficiency (yield per transpiration; WUEplant ) in any crop-breeding programme requires high-throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi ; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13 Cleaf ) has been suggested as a potential time-integrated proxy for WUEi that may provide a tool to screen for WUEplant . However, a genetic link between δ13 Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13 Cleaf and WUEplant under well watered and water-limited growth conditions, a high-throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13 Cleaf were found and co-localized with transpiration, biomass accumulation, and WUEplant . Additionally, WUEplant for each of the δ13 Cleaf QTL allele classes was negatively correlated with δ13 Cleaf , as would be predicted when WUEi influences WUEplant . These results demonstrate that δ13 Cleaf is genetically linked to WUEplant , likely to be through their relationship with WUEi , and can be used as a high-throughput proxy to screen for WUEplant in these C4 species.


Assuntos
Folhas de Planta/metabolismo , Setaria (Planta)/metabolismo , Alelos , Isótopos de Carbono/metabolismo , Genes de Plantas/genética , Transpiração Vegetal/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Setaria (Planta)/genética , Água/metabolismo
18.
Plant Cell ; 32(8): 2445, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33814869
19.
Plant Direct ; 3(10): e00176, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667464
20.
Plant Direct ; 3(5): e00139, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31245778

RESUMO

The integrated responses of biological systems to genetic and environmental variation result in substantial covariance in multiple phenotypes. The resultant pleiotropy, environmental effects, and genotype-by-environmental interactions (GxE) are foundational to our understanding of biology and genetics. Yet, the treatment of correlated characters, and the identification of the genes encoding functions that generate this covariance, has lagged. As a test case for analyzing the genetic basis underlying multiple correlated traits, we analyzed maize kernel ionomes from Intermated B73 x Mo17 (IBM) recombinant inbred populations grown in 10 environments. Plants obtain elements from the soil through genetic and biochemical pathways responsive to physiological state and environment. Most perturbations affect multiple elements which leads the ionome, the full complement of mineral nutrients in an organism, to vary as an integrated network rather than a set of distinct single elements. We compared quantitative trait loci (QTL) determining single-element variation to QTL that predict variation in principal components (PCs) of multiple-element covariance. Single-element and multivariate approaches detected partially overlapping sets of loci. QTL influencing trait covariation were detected at loci that were not found by mapping single-element traits. Moreover, this approach permitted testing environmental components of trait covariance, and identified multi-element traits that were determined by both genetic and environmental factors as well as genotype-by-environment interactions. Growth environment had a profound effect on the elemental profiles and multi-element phenotypes were significantly correlated with specific environmental variables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...