Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2313568121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648470

RESUMO

United States (US) Special Operations Forces (SOF) are frequently exposed to explosive blasts in training and combat, but the effects of repeated blast exposure (RBE) on SOF brain health are incompletely understood. Furthermore, there is no diagnostic test to detect brain injury from RBE. As a result, SOF personnel may experience cognitive, physical, and psychological symptoms for which the cause is never identified, and they may return to training or combat during a period of brain vulnerability. In 30 active-duty US SOF, we assessed the relationship between cumulative blast exposure and cognitive performance, psychological health, physical symptoms, blood proteomics, and neuroimaging measures (Connectome structural and diffusion MRI, 7 Tesla functional MRI, [11C]PBR28 translocator protein [TSPO] positron emission tomography [PET]-MRI, and [18F]MK6240 tau PET-MRI), adjusting for age, combat exposure, and blunt head trauma. Higher blast exposure was associated with increased cortical thickness in the left rostral anterior cingulate cortex (rACC), a finding that remained significant after multiple comparison correction. In uncorrected analyses, higher blast exposure was associated with worse health-related quality of life, decreased functional connectivity in the executive control network, decreased TSPO signal in the right rACC, and increased cortical thickness in the right rACC, right insula, and right medial orbitofrontal cortex-nodes of the executive control, salience, and default mode networks. These observations suggest that the rACC may be susceptible to blast overpressure and that a multimodal, network-based diagnostic approach has the potential to detect brain injury associated with RBE in active-duty SOF.


Assuntos
Traumatismos por Explosões , Militares , Humanos , Traumatismos por Explosões/diagnóstico por imagem , Adulto , Masculino , Estados Unidos , Imageamento por Ressonância Magnética , Feminino , Tomografia por Emissão de Pósitrons , Cognição/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Adulto Jovem
2.
J Spec Oper Med ; 23(4): 47-56, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37851859

RESUMO

United States Special Operations Forces (SOF) personnel are frequently exposed to explosive blasts in training and combat. However, the effects of repeated blast exposure on the human brain are incompletely understood. Moreover, there is currently no diagnostic test to detect repeated blast brain injury (rBBI). In this "Human Performance Optimization" article, we discuss how the development and implementation of a reliable diagnostic test for rBBI has the potential to promote SOF brain health, combat readiness, and quality of life.


Assuntos
Traumatismos por Explosões , Militares , Humanos , Estados Unidos , Qualidade de Vida , Encéfalo/diagnóstico por imagem , Traumatismos por Explosões/diagnóstico , Traumatismos por Explosões/terapia , Explosões
3.
Mar Pollut Bull ; 188: 114617, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701972

RESUMO

Maritime built heritage (e.g., historic seawalls) represents an important component of coastal infrastructure around the world. Despite this, the ecological communities supported by these structures are poorly understood. At seven locations across the UK, we compared the biodiversity and physical habitat characteristics of (1) historic (pre-1900s) masonry walls, (2) concrete walls, and (3) natural rocky cliffs. Historic masonry walls were found to support significantly more species than concrete walls, and in some locations, more diverse communities than nearby rocky cliffs. Nevertheless, community composition remained distinct between the three habitat types at each location. We also found that historic masonry walls provided substantially more cryptic space (i.e., crevices) than both concrete walls and rocky cliffs, and this is positively associated with the ecological value of these structures. Overall, our results suggest that the unique physical properties of historic masonry walls make them an important component of habitat diversity along developed coastlines.


Assuntos
Biodiversidade , Ecossistema
4.
J Neurotrauma ; 39(19-20): 1391-1407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35620901

RESUMO

Emerging evidence suggests that repeated blast exposure (RBE) is associated with brain injury in military personnel. United States (U.S.) Special Operations Forces (SOF) personnel experience high rates of blast exposure during training and combat, but the effects of low-level RBE on brain structure and function in SOF have not been comprehensively characterized. Further, the pathophysiological link between RBE-related brain injuries and cognitive, behavioral, and physical symptoms has not been fully elucidated. We present a protocol for an observational pilot study, Long-Term Effects of Repeated Blast Exposure in U.S. SOF Personnel (ReBlast). In this exploratory study, 30 active-duty SOF personnel with RBE will participate in a comprehensive evaluation of: 1) brain network structure and function using Connectome magnetic resonance imaging (MRI) and 7 Tesla MRI; 2) neuroinflammation and tau deposition using positron emission tomography; 3) blood proteomics and metabolomics; 4) behavioral and physical symptoms using self-report measures; and 5) cognition using a battery of conventional and digitized assessments designed to detect subtle deficits in otherwise high-performing individuals. We will identify clinical, neuroimaging, and blood-based phenotypes that are associated with level of RBE, as measured by the Generalized Blast Exposure Value. Candidate biomarkers of RBE-related brain injury will inform the design of a subsequent study that will test a diagnostic assessment battery for detecting RBE-related brain injury. Ultimately, we anticipate that the ReBlast study will facilitate the development of interventions to optimize the brain health, quality of life, and battle readiness of U.S. SOF personnel.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas , Militares , Biomarcadores , Traumatismos por Explosões/complicações , Humanos , Militares/psicologia , Estudos Observacionais como Assunto , Projetos Piloto , Qualidade de Vida , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...