Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 156: 108620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38006817

RESUMO

Pathogen-triggered infections are the most severe global threat to human health, and to provide their timely treatment and prevention, robust methods for rapid and reliable identification of pathogenic microorganisms are required. Here, we have developed a fast and inexpensive electrocatalytic aptamer assay enabling specific and ultrasensitive detection of E. coli. E. coli, a biomarker of environmental contamination and infections, was captured on the mixed aptamer/thiolated PEG self-assembled monolayers formed on electrochemically pre-treated gold screen-printed electrodes (SPE). Signals from aptamer - E. coli binding were amplified by electrocatalytic reduction of ferricyanide mediated by methylene blue (MB) adsorbed on bacterial and aptamer surfaces. PEG operated as an antifouling agent and inhibited direct (not MB-mediated) discharge of ferricyanide. The assay allowed from 10 to 1000 CFU mL-1E. coli detection in 30 min, with no interference from B. subtilis, in buffer and artificial urine samples. This electrocatalytic approach is fast, specific, sensitive, and can be used directly in in-field and point-of-care applications for analysis of bacteria in human environment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Azul de Metileno/química , Escherichia coli , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Ferricianetos , Ouro/química , Eletrodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA