Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 938: 173609, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815826

RESUMO

Wastewater-Based Epidemiology (WBE) is widely used to monitor the progression of SARS-CoV-2 pandemic. While there is a clear correlation between the number of COVID patients in a sewershed and the viral load in the wastewater, there is notable variability across different treatment plants. In particular, some facilities consistently exhibit higher viral content per diagnosed patient, implying a potential underestimation of the number of COVID patients, while others show a low viral load per diagnosed case, indicating potential attenuation of genetic material from the sewershed. In this study, we investigated the impact of nonylphenol ethoxylate (NPHE), linear alkylbenzene sulfonic acid (LABS), bisoctyl dimethyl ammonium chloride (BDAC), and didecyldimethylammonium chloride (DDAC), the surfactants that have been commonly used as detergents, emulsifiers, wetting agents on the stability of SARS-CoV-2 in wastewater. The results showed multiple and dynamic mechanisms, including degradation and desorption, can occur simultaneously during the interaction between SARS-CoV-2 and different chemicals depending on the physicochemical properties of each chemical. Through the elucidation of the dynamic interactions, the findings from this study could help the state health organizations and scientific community to optimize the SARS-CoV-2 wastewater-based epidemiology strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , Águas Residuárias/química , COVID-19/epidemiologia , Adsorção , Tensoativos , Pandemias , Cinética , Humanos , Eliminação de Resíduos Líquidos/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos
2.
Water Res ; 223: 118985, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030667

RESUMO

Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in the communities since the coronavirus disease 2019 (COVID-19) outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater is critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (PMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated and validated for their utility in normalizing the SARS-CoV-2 loads through two normalizing approaches using the data from 64 wastewater treatment plants (WWTPs) in Missouri. Their utility in assessing the real-time population contributing to the wastewater was also evaluated. The best performing candidate was further tested for its capacity for improving correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City of Columbia, Missouri, a university town with a constantly fluctuating population. Our results showed that, except CRE, the direct and indirect normalization approaches using biomarkers allow accounting for the changes in wastewater dilution and differences in relative human waste input over time regardless flow volume and population of the given WWTP. Among selected biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 load per capita due to its high accuracy, low variability, and high temporal consistency to reflect the change in population dynamics and dilution in wastewater. It also demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater. In addition, the viral loads normalized by the PARA-estimated population significantly improved the correlation (rho=0.5878, p < 0.05) between SARS-CoV-2 load per capita and case numbers per capita. This chemical biomarker complements the current normalization scheme recommended by CDC and helps us understand the size, distribution, and dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each sewershed.


Assuntos
COVID-19 , SARS-CoV-2 , Biomarcadores , COVID-19/epidemiologia , Cafeína , Creatinina , Humanos , Ácido Hidroxi-Indolacético , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
3.
Water Res ; 221: 118824, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830746

RESUMO

Recent SARS-CoV-2 wastewater-based epidemiology (WBE) surveillance have documented a positive correlation between the number of COVID-19 patients in a sewershed and the level of viral genetic material in the wastewater. Efforts have been made to use the wastewater SARS-CoV-2 viral load to predict the infected population within each sewershed using a multivariable regression approach. However, reported clear and sustained variability in SARS-CoV-2 viral load among treatment facilities receiving industrial wastewater have made clinical prediction challenging. Several classes of molecules released by regional industries and manufacturing facilities, particularly the food processing industry, can significantly suppress the SARS-CoV-2 signals in wastewater by breaking down the lipid-bilayer of the membranes. Therefore, a systematic ranking process in conjugation with metabolomic analysis was developed to identify the wastewater treatment facilities exhibiting SARS-CoV-2 suppression and identify and quantify the chemicals suppressing the SARS-COV-2 signals. By ranking the viral load per diagnosed case among the sewersheds, we successfully identified the wastewater treatment facilities in Missouri, USA that exhibit SARS-CoV-2 suppression (significantly lower than 5 × 1011 gene copies/reported case) and determined their suppression rates. Through both untargeted global chemical profiling and targeted analysis of wastewater samples, 40 compounds were identified as candidates of SARS-CoV-2 signal suppressors. Among these compounds, 14 had higher concentrations in wastewater treatment facilities that exhibited SARS-CoV-2 signal suppression compared to the unsuppressed control facilities. Stepwise regression analyses indicated that 4-nonylphenol, palmitelaidic acid, sodium oleate, and polyethylene glycol dioleate are positively correlated with SARS-CoV-2 signal suppression rates. Suppression activities were further confirmed by incubation studies, and the suppression kinetics for each bioactive compound were determined. According to the results of these experiments, bioactive molecules in wastewater can significantly reduce the stability of SARS-CoV-2 genetic marker signals. Based on the concentrations of these chemical suppressors, a correction factor could be developed to achieve more reliable and unbiased surveillance results for wastewater treatment facilities that receive wastewater from similar industries.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
medRxiv ; 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313587

RESUMO

Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the SARS-CoV-2 levels in the communities since the COVID-19 outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater can be critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (pMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated for their utility in normalizing the SARS-CoV-2 loads through developed direct and indirect approaches. Their utility in assessing the real-time population contributing to the wastewater was also evaluated. The best performed candidate was further tested for its capacity for improving correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City of Columbia, Missouri, a university town with a constantly fluctuated population. Our results showed that, except CRE, the direct and indirect normalization approaches using biomarkers allow accounting for the changes in wastewater dilution and differences in relative human waste input over time regardless flow volume and population at any given WWTP. Among selected biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 load per capita due to its high accuracy, low variability, and high temporal consistency to reflect the change in population dynamics and dilution in wastewater. It also demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater. In addition, the viral loads normalized by the PARA-estimated population significantly improved the correlation ( rho =0.5878, p <0.05) between SARS-CoV-2 load per capita and case numbers per capita. This chemical biomarker offers an excellent alternative to the currently CDC-recommended pMMoV genetic biomarker to help us understand the size, distribution, and dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each sewershed. HIGHLIGHT bullet points: The paraxanthine (PARA), the metabolite of the caffeine, is a more reliable population biomarker in SARS-CoV-2 wastewater-based epidemiology studies than the currently recommended pMMoV genetic marker.SARS-CoV-2 load per capita could be directly normalized using the regression functions derived from correlation between paraxanthine and population without flowrate and population data.Normalizing SARS-CoV-2 levels with the chemical marker PARA significantly improved the correlation between viral loads per capita and case numbers per capita.The chemical marker PARA demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater.

5.
Indoor Air ; 31(4): 977-988, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586827

RESUMO

Children are particularly vulnerable to many classes of the volatile organic compounds (VOCs) detected in indoor environments. The negative health impacts associated with chronic and acute exposures of the VOCs might lead to health issues such as genetic damage, cancer, and disorder of nervous systems. In this study, 40 VOCs including aldehydes and ketones, aliphatic hydrocarbons, esters, aromatic hydrocarbons, cyclic terpenes, alcohols, and glycol ethers were identified and qualified in different locations at the University of Missouri (MU) Child Development Laboratory (CDL) in Columbia, Missouri. Our results suggested that the concentrations of the VOCs varied significantly among classrooms, hallways, and playground. The VOCs emitted from personal care and cleaning products had the highest indoor levels (2-ethylhexanol-1, 3-carene, homomenthyl salicylate with mean concentration of 5.15 µg/m3 , 1.57 µg/m3 , and 1.47 µg/m3 , respectively). A cancer risk assessment was conducted, and none of the 95th percentile dose estimates exceeded the age-specific no significant risk levels (NSRL) in all classrooms. Dimensionless toxicity index scores were calculated for all VOCs using a novel web-based framework called Toxicological Prioritization Index (ToxPi), which integrates multiple sources of toxicity data. According to the method, homomenthyl salicylate, benzothiazole, 2-ethylhexyl salicylate, hexadecane, and tridecane exhibited diverse toxicity profiles and ranked as the five most toxic indoor VOCs. The findings of this study provide critical information for policy makers and early education professionals to mitigate the potentially negative health impacts of indoor VOCs in the childcare facilities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Criança , Monitoramento Ambiental , Humanos , Medição de Risco , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade
6.
Int J Hyg Environ Health ; 231: 113664, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212356

RESUMO

The prevalence of pharmaceuticals and personal care products (PPCPs) in municipal wastewater has led to increased concerns about their impact on both human health and ecosystem. The constructed wetlands have been recognized as one of the cost-effective and green mitigation approaches to remove the PPCPs in the municipal wastewater. In this study, the effectiveness of a full scale constructed wetlands treatment system (CCWTs) in removing the 36 PPCPs was investigated. The load mass of PPCPs discharged by the wastewater treatment plant into the CCWTs was calculated. Removal efficiencies of PPCPs were evaluated based on physico-chemical properties such as octanol-water partition coefficient (Log kow), molecular weight (MW, g mol-1) and the acid dissociation constant (pKa). The CCWTs are especially efficient in removing azithromycin, sertraline, tolfenamic acid, and diphenhydramine with removing efficiency >88%. However, the removal efficiencies of PPCPs in CCWTs exhibit a large variability, depending on physical and chemical properties of the molecules, with 4.7-96.7% for antibiotics, 5-86% for antidepressant and antiseizure drugs, 3.5-88% for NSAIDs, 29-77% for ß-blockers and statins and 5.5-94% for other types of PPCPs. In addition, the environmental risk assessment showed that majority of the PPCPs (excluding sulfamethoxazole) in the effluent yielded low aquatic risk (risk quotient, RQ ≤ 0.1) due to the efficiency of CCWTs. The toxicity index scores were calculated by integration of the predicted and available toxicological hazard data into the prioritization ranking algorithm through Toxicological Prioritization Index (ToxPi).


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes Químicos da Água , Ecossistema , Humanos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
7.
Membranes (Basel) ; 9(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443233

RESUMO

Reverse osmosis is a major process that produces soft water from saline water, and its output represents the majority of the overall desalination plants production. Developing efficient membranes for this process is the aim of many research groups and companies. In this work, we studied the effect of adding cellulose micro crystals (CMCs) and cellulose nano crystals (CNCs) to the support layer and thin film nanocomposite (TFN) membrane on the desalination performance. SEM, TEM, ATR-FTIR, and contact angle measurements were used to characterize the membrane's properties; and membrane's performance were evaluated by water flux and NaCl rejection. Filling 2% of CNCs gel in the support layer improved the water flux by +40%, while salt rejection maintained almost the same, around 95%. However, no remarkable improvement was gained by adding CNCs gel to m-phenylenediamine (MPD) solution, which was used in TFN membrane preparation. Filling CMCs powder in TFN membrane led to a slight improvement in terms of water flux.

8.
Water Res ; 144: 572-580, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30086530

RESUMO

The Photo-Fenton-like (PF-like) process with minute Fe(III) concentrations and the Hydrogen Peroxide Photolysis (HPP), using Xe-lamp or solar light as sources of irradiation, were efficiently applied to eliminate the herbicide 2,4-D from water. PF-like experiments concerning ferric and H2O2 concentrations of 0.6 mg L-1 and 20 mg L-1 respectively, using Xenon lamps (Xe-lamps) as a source of irradiation and 2,4-D concentrations of 10 mg L-1 at pH 3.6, exhibited complete 2,4-D degradation and 77% dissolved organic carbon (DOC) removal after 30 min and 6 h of irradiation respectively whereas HPP (in absence of ferric ions) experiments showed a 2,4-D reduction and DOC removal of 90% and 7% respectively after 6 h of irradiation. At pH 7.0, HPP process achieved a 2,4-D abatement of approximately 75% and a DOC removal of 4% after 6 h. PF-like exhibited slightly improved 2,4-D and DOC removals (80% and 12% respectively) after the same irradiation time probably due to the low pH reduction (from 7.0 to 5.6). Several chlorinated-aromatic intermediates were identified by HPLC-MS. These by-products were efficiently removed by PF at pH 3.6, whereas at neutral PF-like and acid or neutral HPP, they were not efficiently degraded. With natural solar light irradiation, 10 and 1 mg L-1 of 2,4-D were abated using minor H2O2 concentrations (3, 6, 10 and 20 mg L-1) and iron at 0.6 mg L-1 in Milli-Q water. Similar results to Xe-lamp experiments were obtained, where solar UV-B + A light H2O2 photolysis (HPSP) and solar photo-Fenton-like (SPF-like) played an important role and even at low H2O2 and ferric concentrations of 3 and 0.6 mg L-1 respectively, 2,4-D was efficiently removed at pH 3.6. Simulated surface water at pH 3.6 containing 1 mg L-1 2,4-D, 20 mg L-1 H2O2 and 0.6 mg L-1 Fe(III) under natural sunlight irradiation efficiently removed the herbicide and its main metabolite 2,4-DCP after 30 min of treatment while at neutral pH, 40% of herbicide degradation was achieved. In the case of very low iron concentrations (0.05 mg L-1) at acid pH, 150 min of solar treatment was required to remove 2,4-D.


Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Fotólise , Raios Ultravioleta , Purificação da Água/instrumentação
9.
Nanomaterials (Basel) ; 8(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857529

RESUMO

Carbon dots (CDs) are engineered nanoparticles that are used in a number of bioapplications such as bioimaging, drug delivery and theranostics. The effects of CDs on the immune system have not been evaluated. The effects of CDs on the immune system were assessed by using RAW 264.7 cells and whole blood cell cultures. RAW cells were exposed to CD concentrations under basal conditions. Whole blood cell cultures were exposed to CD concentrations under basal conditions or in the presence of the mitogens, lipopolysaccharide (LPS) or phytohaemmagglutinin (PHA). After exposure, a number of parameters were assessed, such as cell viability, biomarkers of inflammation, cytokine biomarkers of the acquired immune system and a proteome profile analysis. CDs were cytotoxic to RAW and whole blood cell cultures at 62.5, 250 and 500 µg/mL, respectively. Biomarkers associated with inflammation were induced by CD concentrations ≥250 and 500 µg/mL under basal conditions for both RAW and whole blood cell cultures, respectively. The humoral immune cytokine interleukin (IL)-10 was increased at 500 µg/mL CD under both basal and PHA activated whole blood cell culture conditions. Proteome analysis supported the inflammatory data as upregulated proteins identified are associated with inflammation. The upregulated proteins provide potential biomarkers of risk that can be assessed upon CD exposure.

10.
J Environ Sci (China) ; 65: 223-235, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548393

RESUMO

Carbon dots are rapidly emerging carbon-based nanomaterials that, due to their growing applications, will inevitable find their way to natural waters; however, their environmental fate is mostly unknown. Carbon dots with different surface functionality were fabricated and characterized by TEM and FT-IR. Their surface charge, given by the zeta potential, and their hydrodynamic diameter in suspension were investigated under a variety of environmentally relevant conditions. The effect of ionic strength was studied in the presence of monovalent (NaCl) and divalent (CaCl2) cations, for pH levels from 3 to 11; humic acid was used as a model for dissolved natural organic matter. Total potential energies of interactions were modeled by classical DLVO theory. The experimental results showed that water chemistry altered the surface charge of the nanomaterials, but their hydrodynamic size could not be correlated to those changes. Evidence of specific interactions was found for the amino functionalized particles in most cases, as well as the plain carbon dots in the presence of Ca2+ and humic acid. Nanoparticles remained largely stable in suspension, with some exception at the highest ionic strength considered. DLVO theory did not adequately capture the aggregation behavior of the system. Moreover, cation and/or humic acid adsorption negatively affected the emission intensity of the particles, suggesting limitations to their use in natural water sensing applications. The particular stability shown by the carbon dots results in exposure to organisms in the water column and the possibility of contamination transported to significant distances from their source.


Assuntos
Carbono/química , Modelos Químicos , Pontos Quânticos/química , Água/química , Adsorção , Concentração Osmolar , Cloreto de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
11.
Nanomaterials (Basel) ; 8(2)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495255

RESUMO

Graphene oxide nanoparticles (GONPs) have attracted a lot of attention due to their many applications. These applications include batteries, super capacitors, drug delivery and biosensing. However, few studies have investigated the effects of these nanoparticles on the immune system. In this study, the in vitro effects of GONPs on the immune system was evaluated by exposing murine macrophages, RAW 264.7 cells and human whole blood cell cultures (to GONPs. The effects of GONPs on RAW cells were monitored under basal conditions. The whole blood cell cultures were exposed to GONPs in the presence or absence of the mitogens lipopolysaccharide (LPS) and phytohaemmagglutinin (PHA). A number of parameters were monitored for both RAW and whole blood cell cultures, these included cytotoxicity, inflammatory biomarkers, cytokines of the acquired immune system and a proteome profile analysis. The GONPs were cytotoxic to both RAW and whole blood cell cultures at 500 µg/mL. In the absence of LPS, GONPs elicited an inflammatory response from the murine macrophage, RAW and whole blood cell cultures at 15.6 and 5 µg/mL respectively. This activation was further corroborated by proteome profile analysis of both experimental cultures. GONPs inhibited LPS induced interleukin 6 (IL-6) synthesis and PHA induced interferon gamma (IFNγ) synthesis by whole blood cell cultures in a dose dependent manner. In the absence of mitogens, GONPs stimulated IL-10 synthesis by whole blood cell cultures. The current study shows that GONPs modulate immune system biomarkers and that these may pose a health risk to individuals exposed to this type of nanoparticle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA