Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Bull ; 232(2): 101-109, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28654329

RESUMO

Shelter-seeking behaviors are vital for survival for a range of juvenile benthic organisms. These behaviors may be innate or they may be affected by prior experience. After hatching, American lobsters Homarus americanus likely first come into contact with shelter during the late postlarval (decapodid) stage, known as stage IV. After the subsequent molt to the first juvenile stage (stage V), they are entirely benthic and are thought to be highly cryptic. We hypothesized that postlarval (stage IV) experience with shelter would carry over into the first juvenile stage (stage V) and reduce the time needed for juveniles to locate and enter shelters (sheltering). We found some evidence of a carryover effect, but not the one we predicted: stage V juveniles with postlarval shelter experience took significantly longer to initiate sheltering. We also hypothesized that stage V juveniles would demonstrate learning by relocating shelters more quickly with immediate prior experience. Our findings were mixed. In a maze, juveniles with immediate prior experience were faster to regain visual contact with shelter, suggesting that they had learned the location of the shelter. In contrast, there was no significant effect of immediate prior experience on time to initiate sheltering in an open arena, or in the maze after juveniles had regained visual contact. We conclude that very young (stage V) juvenile lobsters modify their shelter-seeking behavior based on prior experiences across several timescales. Ecologically relevant variation in habitat exposure among postlarval and early juvenile lobsters may influence successful recruitment in this culturally and commercially important fishery species.


Assuntos
Comportamento Animal , Nephropidae/fisiologia , Animais , Ecossistema
2.
PLoS One ; 7(12): e50015, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226507

RESUMO

Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50'N on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region. Pioneer colonists included two gastropod species: Ctenopelta porifera, which was new to the vent field, and Lepetodrilus tevnianus, which had been rare before the eruption but persisted in high abundance afterward, delaying and possibly out-competing the ubiquitous pre-eruption congener L. elevatus. A decrease in abundance of C. porifera over time, and the arrival of later species, corresponded to a decrease in vent fluid flow and in the sulfide to temperature ratio. For some species these successional changes were likely due to habitat requirements, but other species persisted (L. tevnianus) or arrived (L. elevatus) in patterns unrelated to their habitat preferences. After two years, disturbed communities had started to resemble pre-eruption ones, but were lower in diversity. When compared to a prior (1991) eruption, the succession of foundation species (tubeworms and mussels) appeared to be delayed, even though habitat chemistry became similar to the pre-eruption state more quickly. Surprisingly, a nearby community that had not been disturbed by the eruption was invaded by the pioneers, possibly after they became established in the disturbed vents. These results indicate that the post-eruption arrival of species from remote locales had a strong and persistent effect on communities at both disturbed and undisturbed vents.


Assuntos
Gastrópodes/classificação , Biologia Marinha , Animais , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA