Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745508

RESUMO

Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs like lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. Our study shows that a common characteristic of the P. falciparum proteome - stretches of poly-lysine residues such as those found in proteins related to adhesion and pathogenicity - can serve as an effective peptide treatment for infected erythrocytes. A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 hours. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers further increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, our affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. Since poly-lysine dendrimers are already FDA-approved for drug delivery, their adaptation as antimalarial drugs presents a promising new therapeutic strategy.

2.
Nat Commun ; 14(1): 453, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707519

RESUMO

Cerebrospinal fluid (CSF) is essential for the development and function of the central nervous system (CNS). However, the brain and its interstitium have largely been thought of as a single entity through which CSF circulates, and it is not known whether specific cell populations within the CNS preferentially interact with the CSF. Here, we develop a technique for CSF tracking, gold nanoparticle-enhanced X-ray microtomography, to achieve micrometer-scale resolution visualization of CSF circulation patterns during development. Using this method and subsequent histological analysis in rodents, we identify previously uncharacterized CSF pathways from the subarachnoid space (particularly the basal cisterns) that mediate CSF-parenchymal interactions involving 24 functional-anatomic cell groupings in the brain and spinal cord. CSF distribution to these areas is largely restricted to early development and is altered in posthemorrhagic hydrocephalus. Our study also presents particle size-dependent CSF circulation patterns through the CNS including interaction between neurons and small CSF tracers, but not large CSF tracers. These findings have implications for understanding the biological basis of normal brain development and the pathogenesis of a broad range of disease states, including hydrocephalus.


Assuntos
Hidrocefalia , Nanopartículas Metálicas , Animais , Ouro/metabolismo , Roedores , Microtomografia por Raio-X , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo
3.
Circulation ; 146(8): 623-638, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35880523

RESUMO

BACKGROUND: Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T cells, and have adverse effects. The innate immune response plays an essential role in the recruitment and activation of T cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge about donor immune cell types and functions in the setting of cardiac transplantation, and no current therapeutics exist for targeting these cell populations. METHODS: Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and macrophage function during acute cellular rejection of transplanted hearts in mice. We performed single-cell RNA sequencing on donor and recipient macrophages and monocytes at multiple time points after transplantation. On the basis of our imaging and single-cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ (C-C chemokine receptor 2) and CCR2- macrophages using selective cell ablation strategies in donor grafts before transplant. Last, we performed functional validation that donor macrophages signal through MYD88 (myeloid differentiation primary response protein 88) to facilitate cellular rejection. RESULTS: Donor macrophages persisted in the rejecting transplanted heart and coexisted with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity among recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. Although selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages are activated through MYD88/nuclear factor kappa light chain enhancer of activated B cells signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen-presenting cell recruitment, reduced ability of antigen-presenting cells to present antigen to T cells, decreased emergence of allograft-reactive T cells, and extended allograft survival. CONCLUSIONS: Distinct populations of donor and recipient macrophages coexist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection, and deletion of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.


Assuntos
Transplante de Coração , Animais , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Doadores de Tecidos
4.
Hippocampus ; 31(11): 1215-1232, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478219

RESUMO

The dentate gyrus not only gates the flow of information into the hippocampus, it also integrates and processes this information. Mossy cells (MCs) are a major type of excitatory neuron strategically located in the hilus of the dentate gyrus where they can contribute to this processing through networks of synapses with inhibitory neurons and dentate granule cells. Some prior work has suggested that MCs can form excitatory synapses with other MCs, but the role of these synapses in the network activity of the dentate gyrus has received little attention. Here, we investigated synaptic inputs to MCs in mouse hippocampal slices using a genetically encoded hybrid voltage sensor (hVOS) targeted to MCs by Cre-lox technology. This enabled optical recording of voltage changes from multiple MCs simultaneously. Stimulating granule cells and CA3 pyramidal cells activated well-established inputs to MCs and elicited synaptic responses as expected. However, the weak blockade of MC responses to granule cell layer stimulation by DCG-IV raised the possibility of another source of excitation. To evaluate synapses between MCs as this source, single MCs were stimulated focally. Stimulation of one MC above its action potential threshold evoked depolarizing responses in neighboring MCs that depended on glutamate receptors. Short latency responses of MCs to other MCs did not depend on release from granule cell axons. However, granule cells did contribute to the longer latency responses of MCs to stimulation of other MCs. Thus, MCs transmit their activity to other MCs both through direct synaptic coupling and through polysynaptic coupling with dentate granule cells. MC-MC synapses can redistribute information entering the dentate gyrus and thus shape and modulate the electrical activity underlying hippocampal functions such as navigation and memory, as well as excessive excitation during seizures.


Assuntos
Giro Denteado , Fibras Musgosas Hipocampais , Animais , Giro Denteado/fisiologia , Hipocampo/fisiologia , Camundongos , Fibras Musgosas Hipocampais/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia
5.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34320366

RESUMO

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Miocárdio/metabolismo , Troponina T/genética
6.
Hepatology ; 74(3): 1203-1219, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638902

RESUMO

BACKGROUND AND AIMS: Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS: Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS: Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.


Assuntos
Carcinoma Hepatocelular/genética , Fígado Gorduroso/genética , Lipoproteínas VLDL/metabolismo , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , Proteínas de Membrana/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Fígado Gorduroso/metabolismo , Lipidômica , Fígado/patologia , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Triglicerídeos/metabolismo
8.
Diabetes ; 70(2): 436-448, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33168621

RESUMO

Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic ß-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in ß-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.


Assuntos
Diabetes Mellitus/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus/genética , Exocitose/fisiologia , Teste de Tolerância a Glucose , Camundongos , Camundongos Knockout , Ratos , Proteínas de Transporte Vesicular/genética
9.
J Biol Chem ; 295(46): 15782-15793, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32938716

RESUMO

Much of our understanding of the spatial organization of and interactions between cellular organelles and macromolecular complexes has been the result of imaging studies utilizing either light- or electron-based microscopic analyses. These classical approaches, while insightful, are nonetheless limited either by restrictions in resolution or by the sheer complexity of generating multidimensional data. Recent advances in the use and application of X-rays to acquire micro- and nanotomographic data sets offer an alternative methodology to visualize cellular architecture at the nanoscale. These new approaches allow for the subcellular analyses of unstained vitrified cells and three-dimensional localization of specific protein targets and have served as an essential tool in bridging light and electron correlative microscopy experiments. Here, we review the theory, instrumentation details, acquisition principles, and applications of both soft X-ray tomography and X-ray microscopy and how the use of these techniques offers a succinct means of analyzing three-dimensional cellular architecture. We discuss some of the recent work that has taken advantage of these approaches and detail how they have become integral in correlative microscopy workflows.


Assuntos
Imageamento Tridimensional/métodos , Tomografia por Raios X/métodos , Meios de Contraste/química , Microscopia Eletrônica de Varredura , Nanopartículas/química , Saccharomyces cerevisiae/ultraestrutura , Tomografia por Raios X/instrumentação , Microtomografia por Raio-X
10.
Elife ; 92020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32469313

RESUMO

Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.


Assuntos
Adenosina/genética , Plasmodium falciparum/genética , Biossíntese de Proteínas/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Adenosina/metabolismo , Células Cultivadas , Eritrócitos , Fibroblastos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Polímeros/metabolismo , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
11.
J Biomech Eng ; 142(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536113

RESUMO

Trans-synovial solute transport plays a critical role in the clearance of intra-articularly (IA) delivered drugs. In this study, we present a computational finite element model (FEM) of solute transport through the synovium validated by experiments on synovial explants. Unsteady diffusion of urea, a small uncharged molecule, was measured through devitalized porcine and human synovium using custom-built diffusion chambers. A multiphasic computational model was constructed and optimized with the experimental data to extract effective diffusivity for urea within the synovium. A monotonic decrease in urea concentration was observed in the donor bath over time, with an effective diffusivity found to be an order of magnitude lower in synovium versus that measured in free solution. Parametric studies incorporating an intimal cell layer with varying thickness and varying effective diffusivities were performed, revealing a dependence of drug clearance kinetics on both parameters. The findings of this study indicate that the synovial matrix impedes urea solute transport out of the joint with little retention of the solute in the matrix.


Assuntos
Análise de Elementos Finitos , Membrana Sinovial , Animais , Transporte Biológico , Cartilagem Articular , Difusão , Modelos Biológicos , Suínos
12.
Curr Opin Biomed Eng ; 12: 51-58, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32864524

RESUMO

The detection of action potentials and the characterization of their waveform represent basic benchmarks for evaluating optical sensors of voltage. The effectiveness of a voltage sensor in reporting action potentials will determine its usefulness in voltage imaging experiments designed for the study of neural circuitry. The hybrid voltage sensor (hVOS) technique is based on a sensing mechanism with a rapid response to voltage changes. hVOS imaging is thus well suited for optical studies of action potentials. This technique detects action potentials in intact brain slices with an excellent signal-to-noise ratio. These optical action potentials recapitulate voltage recordings with high temporal fidelity. In different genetically-defined types of neurons targeted by cre-lox technology, hVOS recordings of action potentials recapitulate the expected differences in duration. Furthermore, by targeting an hVOS probe to axons, imaging experiments can follow action potential propagation and document dynamic changes in waveform resulting from use-dependent plasticity.

13.
Stem Cell Reports ; 11(2): 410-424, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30017821

RESUMO

Intestinal epithelial stem cell (IESC) fate is promoted by two major transcriptional regulators, the TCF4/ß-catenin complex and ASCL2, which drive expression of IESC-specific factors, including Lgr5, Ephb2, and Rnf43. Canonical Wnt signaling via TCF4/ß-catenin directly transactivates Ascl2, which in turn auto-regulates its own expression. Conversely, Let-7 microRNAs antagonize the IESC lineage by repressing specific mRNA targets. Here, we identify the zinc finger transcription factor PLAGL2 as a Let-7 target that regulates IESC fate. PLAGL2 drives an IESC expression signature, activates Wnt gene expression, and enhances a TCF/LEF reporter in intestinal organoids. In parallel, via cell-autonomous mechanisms, PLAGL2 is required for lineage clonal expansion and directly enhances expression of ASCL2. PLAGL2 also supports enteroid growth and survival in the context of Wnt ligand depletion. PLAGL2 expression is strongly associated with an IESC signature in colorectal cancer and may be responsible for contributing to the aberrant activation of an immature phenotype.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Biomarcadores , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fatores de Transcrição/genética
14.
Curr Protoc Cytom ; 85(1): e39, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29927100

RESUMO

Since its commercialization in the late 1980's, confocal laser scanning microscopy (CLSM) has since become one of the most prevalent fluorescence microscopy techniques for three-dimensional structural studies of biological cells and tissues. The flexibility of the approach has enabled its application in a diverse array of studies, from the fast imaging of dynamic processes in living cells, to meticulous morphological analyses of tissues, and co-localization of protein expression patterns. In this chapter, we introduce the principles of confocal microscopy and discuss how the approach has become a mainstay in the biological sciences. We describe the components of a CLSM system and assess how modern implementations of the approach have further expanded the use of the technique. Finally, we briefly outline some practical considerations to take into account when acquiring data using a CLSM system. © 2018 by John Wiley & Sons, Inc.


Assuntos
Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , História do Século XX , História do Século XXI , Microscopia Confocal/história , Microscopia Confocal/tendências
15.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785728

RESUMO

The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.


Assuntos
Potenciais de Ação , Axônios/fisiologia , Animais , Hipocampo/fisiologia , Camundongos Transgênicos , Optogenética , Técnicas de Cultura de Tecidos , Imagens com Corantes Sensíveis à Voltagem
16.
J Neurosci ; 37(38): 9305-9319, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842412

RESUMO

Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information.SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In brain slices from these animals, single-trial hybrid optical voltage sensor recordings revealed voltage changes with submillisecond resolution in multiple neurons simultaneously. This imaging tool will allow for the study of the emergent properties of neural circuits and permit experimental tests of the roles of specific types of neurons in complex circuit activity.


Assuntos
Integrases/genética , Rede Nervosa/citologia , Neurônios/citologia , Neurônios/fisiologia , Optogenética/métodos , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Sonda Molecular , Rede Nervosa/fisiologia
17.
J Neurophysiol ; 116(1): 191-200, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27075543

RESUMO

The mammalian superior colliculus (SC) is a midbrain structure that integrates multimodal sensory inputs and computes commands to initiate rapid eye movements. SC neurons burst with the sudden onset of a visual stimulus, followed by persistent activity that may underlie shifts of attention and decision making. Experiments in vitro suggest that circuit reverberations play a role in the burst activity in the SC, but the origin of persistent activity is unclear. In the present study we characterized an afterdepolarization (ADP) that follows action potentials in slices of rat SC. Population responses seen with voltage-sensitive dye imaging consisted of rapid spikes followed immediately by a second distinct depolarization of lower amplitude and longer duration. Patch-clamp recordings showed qualitatively similar behavior: in nearly all neurons throughout the SC, rapid spikes were followed by an ADP. Ionic and pharmacological manipulations along with experiments with current and voltage steps indicated that the ADP of SC neurons arises from Na(+) current that either persists or resurges following Na(+) channel inactivation at the end of an action potential. Comparisons of pharmacological properties and frequency dependence revealed a clear parallel between patch-clamp recordings and voltage imaging experiments, indicating a common underlying membrane mechanism for the ADP in both single neurons and populations. The ADP can initiate repetitive spiking at intervals consistent with the frequency of persistent activity in the SC. These results indicate that SC neurons have intrinsic membrane properties that can contribute to electrical activity that underlies shifts of attention and decision making.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Sódio/metabolismo , Colículos Superiores/fisiologia , Animais , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Colículos Superiores/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Imagens com Corantes Sensíveis à Voltagem
18.
J Neurophysiol ; 114(1): 662-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25995346

RESUMO

The mammalian superior colliculus (SC) is a laminar midbrain structure that translates visual signals into commands to shift the focus of attention and gaze. The SC plays an integral role in selecting targets and ultimately generating rapid eye movements to those targets. In all mammals studied to date, neurons in the SC are arranged topographically such that the location of visual stimuli and the endpoints of orienting movements form organized maps in superficial and deeper layers, respectively. The organization of these maps is thought to underlie attentional priority by assessing which regions of the visual field contain behaviorally relevant information. Using voltage imaging and patch-clamp recordings in parasagittal SC slices from the rat, we found the synaptic circuitry of the visuosensory map in the SC imposes a strong bias. Voltage imaging of responses to electrical stimulation revealed more spread in the caudal direction than the rostral direction. Pharmacological experiments demonstrated that this asymmetry arises from GABAA receptor activation rostral to the site of stimulation. Patch-clamp recordings confirmed this rostrally directed inhibitory circuit and showed that it is contained within the visuosensory layers of the SC. Stimulation of two sites showed that initial stimulation of a caudal site can take priority over subsequent stimulation of a rostral site. Taken together, our data indicate that the circuitry of the visuosensory SC is hard-wired to give higher priority to more peripheral targets, and this property is conferred by a uniquely structured, dedicated inhibitory circuit.


Assuntos
Inibição Neural/fisiologia , Colículos Superiores/fisiologia , Animais , Benzilaminas/farmacologia , Mapeamento Encefálico , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Inibição Neural/efeitos dos fármacos , Técnicas de Patch-Clamp , Ácidos Fosfínicos/farmacologia , Piridazinas/farmacologia , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Colículos Superiores/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Imagens com Corantes Sensíveis à Voltagem
19.
J Neurophysiol ; 113(4): 1249-59, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25411462

RESUMO

Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits.


Assuntos
Potenciais de Ação , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Neurônios/fisiologia , Optogenética/métodos , Potenciais Sinápticos , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/metabolismo , Picratos/química
20.
J Neurosci ; 34(20): 6822-33, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24828636

RESUMO

Neural circuits that translate sensory information into motor commands are organized in a feedforward manner converting sensory information into motor output. The superior colliculus (SC) follows this pattern as it plays a role in converting visual information from the retina and visual cortex into motor commands for rapid eye movements (saccades). Feedback from movement to sensory regions is hypothesized to play critical roles in attention, visual image stability, and saccadic suppression, but in contrast to feedforward pathways, motor feedback to sensory regions has received much less attention. The present study used voltage imaging and patch-clamp recording in slices of rat SC to test the hypothesis of an excitatory synaptic pathway from the motor layers of the SC back to the sensory superficial layers. Voltage imaging revealed an extensive depolarization of the superficial layers evoked by electrical stimulation of the motor layers. A pharmacologically isolated excitatory synaptic potential in the superficial layers depended on stimulus strength in the motor layers in a manner consistent with orthodromic excitation. Patch-clamp recording from neurons in the sensory layers revealed excitatory synaptic potentials in response to glutamate application in the motor layers. The location, size, and morphology of responsive neurons indicated they were likely to be narrow-field vertical cells. This excitatory projection from motor to sensory layers adds an important element to the circuitry of the SC and reveals a novel feedback pathway that could play a role in enhancing sensory responses to attended targets as well as visual image stabilization.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica/fisiologia , Neurônios/fisiologia , Colículos Superiores/fisiologia , Sinapses/fisiologia , Animais , Feminino , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...