Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4711, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949095

RESUMO

Non-alcoholic steatohepatitis (NASH), characterized as the joint presence of steatosis, hepatocellular ballooning and lobular inflammation, and liver fibrosis are strong contributors to liver-related and overall mortality. Despite the high global prevalence of NASH and the substantial healthcare burden, there are currently no FDA-approved therapies for preventing or reversing NASH and/or liver fibrosis. Importantly, despite nearly 200 pharmacotherapies in different phases of pre-clinical and clinical assessment, most therapeutic approaches that succeed from pre-clinical rodent models to the clinical stage fail in subsequent Phase I-III trials. In this respect, one major weakness is the lack of adequate mouse models of NASH that also show metabolic comorbidities commonly observed in NASH patients, including obesity, type 2 diabetes and dyslipidaemia. This study provides an in-depth comparison of NASH pathology and deep metabolic profiling in eight common inbred mouse strains (A/J, BALB/c, C3H/HeJ, C57BL/6J, CBA/CaH, DBA/2J, FVB/N and NOD/ShiLtJ) fed a western-style diet enriched in fat, sucrose, fructose and cholesterol for eight months. Combined analysis of histopathology and hepatic lipid metabolism, as well as measures of obesity, glycaemic control and insulin sensitivity, dyslipidaemia, adipose tissue lipolysis, systemic inflammation and whole-body energy metabolism points to the FVB/N mouse strain as the most adequate diet-induced mouse model for the recapitulation of metabolic (dysfunction) associated fatty liver disease (MAFLD) and NASH. With efforts in the pharmaceutical industry now focussed on developing multi-faceted therapies; that is, therapies that improve NASH and/or liver fibrosis, and concomitantly treat other metabolic comorbidities, this mouse model is ideally suited for such pre-clinical use.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C3H , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Cirrose Hepática/patologia , Inflamação/patologia , Obesidade/metabolismo , Modelos Animais de Doenças
2.
Am J Physiol Endocrinol Metab ; 324(2): E187-E198, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629823

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Dysregulation in hepatic lipid metabolism, including increased fatty acid uptake and de novo lipogenesis (DNL), is a hallmark of NAFLD. Here, we investigated dual inhibition of the fatty acid transporter fatty acid translocase (FAT/CD36), and acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL, for the treatment of NAFLD in mice. Mice with hepatic CD36 deletion (Cd36LKO) and wild-type littermates were fed a high-fat diet for 12 wk and treated daily with either oral administration of an ACC inhibitor (GS-834356, Gilead Sciences; ACCi) or vehicle for 8 wk. Neither CD36 deletion or ACC inhibition impacted body composition, energy expenditure, or glucose tolerance. Cd36LKO mice had elevated fasting plasma insulin, suggesting mild insulin resistance. Whole body fatty acid oxidation was significantly decreased in Cd36LKO mice. Liver triglyceride content was significantly reduced in mice treated with ACCi; however, CD36 deletion caused an unexpected increase in liver triglycerides. This was associated with upregulation of genes and proteins of DNL, including ACC, and decreased liver triglyceride secretion ex vivo. Overall, these data confirm the therapeutic utility of ACC inhibition for steatosis resolution but indicate that inhibition of CD36 is not an effective treatment for NAFLD in mice.NEW & NOTEWORTHY Dysregulation of hepatic lipid metabolism is a hallmark of nonalcoholic fatty liver disease. Here, we show that dual inhibition of the de novo lipogenesis enzyme, ACC, and hepatic deletion of the fatty acid transporter, CD36, was ineffective for the treatment of NAFLD in mice. This was due to a paradoxical increase in liver triglycerides with CD36 deletion resulting from decreased hepatic triglyceride secretion and increased lipogenic gene expression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Lipogênese/genética , Ácidos Graxos/metabolismo
3.
Diabetes ; 72(6): 715-727, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580496

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and impaired glycemic control are closely linked; however, the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. The high secretory capacity of the liver and impairments in protein secretion in NAFLD suggest that endocrine changes in the liver are likely to contribute to glycemic defects. We identify hexosaminidase A (HEXA) as an NAFLD-induced hepatokine in both mice and humans. HEXA regulates sphingolipid metabolism, converting GM2 to GM3 gangliosides-sphingolipids that are primarily localized to cell-surface lipid rafts. Using recombinant murine HEXA protein, an enzymatically inactive HEXA(R178H) mutant, or adeno-associated virus vectors to induce hepatocyte-specific overexpression of HEXA, we show that HEXA improves blood glucose control by increasing skeletal muscle glucose uptake in mouse models of insulin resistance and type 2 diabetes, with these effects being dependent on HEXA's enzymatic action. Mechanistically, HEXA remodels muscle lipid raft ganglioside composition, thereby increasing IGF-1 signaling and GLUT4 localization to the cell surface. Disrupting lipid rafts reverses these HEXA-mediated effects. In this study, we identify a pathway for intertissue communication between liver and skeletal muscle in the regulation of systemic glycemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Somatomedinas , Humanos , Animais , Camundongos , Hexosaminidase A , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Recombinantes , Glucose , Músculo Esquelético/metabolismo
4.
Mol Metab ; 60: 101491, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35381388

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is linked to impaired lipid metabolism and systemic insulin resistance, which is partly mediated by altered secretion of liver proteins known as hepatokines. Regular physical activity can resolve NAFLD and improve its metabolic comorbidities, however, the effects of exercise training on hepatokine secretion and the metabolic impact of exercise-regulated hepatokines in NAFLD remain unresolved. Herein, we examined the effect of endurance exercise training on hepatocyte secreted proteins with the aim of identifying proteins that regulate metabolism and reduce NAFLD severity. METHODS: C57BL/6 mice were fed a high-fat diet for six weeks to induce NAFLD. Mice were exercise trained for a further six weeks, while the control group remained sedentary. Hepatocytes were isolated two days after the last exercise bout, and intracellular and secreted proteins were detected using label-free mass spectrometry. Hepatocyte secreted factors were applied to skeletal muscle and liver ex vivo and insulin action and fatty acid metabolism were assessed. Syndecan-4 (SDC4), identified as an exercise-responsive hepatokine, was overexpressed in the livers of mice using adeno-associated virus. Whole-body energy homeostasis was assessed by indirect calorimetry and skeletal muscle and liver metabolism was assessed using radiometric techniques. RESULTS: Proteomics analysis detected 2657 intracellular and 1593 secreted proteins from mouse hepatocytes. Exercise training remodelled the hepatocyte proteome, with differences in 137 intracellular and 35 secreted proteins. Bioinformatic analysis of hepatocyte secreted proteins revealed enrichment of tumour suppressive proteins and proteins involved in lipid metabolism and mitochondrial function, and suppression of oncogenes and regulators of oxidative stress. Hepatocyte secreted factors from exercise trained mice improved insulin action in skeletal muscle and increased hepatic fatty acid oxidation. Hepatocyte-specific overexpression of SDC4 reduced hepatic steatosis, which was associated with reduced hepatic fatty acid uptake, and blunted pro-inflammatory and pro-fibrotic gene expression. Treating hepatocytes with recombinant ectodomain of SDC4 (secreted form) recapitulated these effects with reduced fatty acid uptake, lipid storage and lipid droplet accumulation. CONCLUSIONS: Remodelling of hepatokine secretion is an adaptation to regular exercise training that induces changes in metabolism in the liver and skeletal muscle. SDC4 is a novel exercise-responsive hepatokine that decreases fatty acid uptake and reduces steatosis in the liver. By understanding the proteomic changes in hepatocytes with exercise, these findings have potential for the discovery of new therapeutic targets for NAFLD.


Assuntos
Insulinas , Hepatopatia Gordurosa não Alcoólica , Sindecana-4/metabolismo , Animais , Ácidos Graxos , Insulinas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteômica
5.
Nat Commun ; 13(1): 1259, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273160

RESUMO

Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.


Assuntos
Cerebrosídeo Sulfatase , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Cerebrosídeo Sulfatase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Controle Glicêmico , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteômica
6.
FASEB J ; 35(12): e22046, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800307

RESUMO

Hexosaminidase A (HexA), a heterodimer consisting of HEXA and HEXB, converts the ganglioside sphingolipid GM2 to GM3 by removing a terminal N-acetyl-d-galactosamine. HexA enzyme deficiency in humans leads to GM2 accumulation in cells, particularly in neurons, and is associated with neurodegeneration. While HexA and sphingolipid metabolism have been extensively investigated in the context of neuronal lipid metabolism, little is known about the metabolic impact of HexA and ganglioside degradation in other tissues. Here, we focussed on the role of HexA in the liver, which is a major regulator of systemic lipid metabolism. We find that hepatic Hexa expression is induced by lipid availability and increased in the presence of hepatic steatosis, which is associated with increased hepatic GM3 content. To assess the impact of HEXA on hepatic lipid metabolism, we used an adeno-associated virus to overexpress HEXA in the livers of high-fat diet fed mice. HEXA overexpression was associated with increased hepatic GM3 content and increased expression of enzymes involved in the degradation of glycated sphingolipids, ultimately driving sphingomyelin accumulation in the liver. In addition, HEXA overexpression led to substantial proteome remodeling in cell surface lipid rafts, which was associated with increased VLDL processing and secretion, hypertriglyceridemia and ectopic lipid accumulation in peripheral tissues. This study established an important role of HEXA in modulating hepatic sphingolipid and lipoprotein metabolism.


Assuntos
Fígado Gorduroso/patologia , Hexosaminidase A/metabolismo , Hipertrigliceridemia/patologia , Lipídeos/análise , Lipoproteínas VLDL/metabolismo , Microdomínios da Membrana/patologia , Esfingolipídeos/metabolismo , Animais , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hexosaminidase A/genética , Hipertrigliceridemia/etiologia , Hipertrigliceridemia/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
7.
Front Endocrinol (Lausanne) ; 12: 642432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746906

RESUMO

Ectodysplasin A (EDA) was recently identified as a liver-secreted protein that is increased in the liver and plasma of obese mice and causes skeletal muscle insulin resistance. We assessed if liver and plasma EDA is associated with worsening non-alcoholic fatty liver disease (NAFLD) in obese patients and evaluated plasma EDA as a biomarker for NAFLD. Using a cross-sectional study in a public hospital, patients with a body mass index >30 kg/m2 (n=152) underwent liver biopsy for histopathology assessment and fasting liver EDA mRNA. Fasting plasma EDA levels were also assessed. Non-alcoholic fatty liver (NAFL) was defined as >5% hepatic steatosis and nonalcoholic steatohepatitis (NASH) as NAFLD activity score ≥3. Patients were divided into three groups: No NAFLD (n=45); NAFL (n=65); and NASH (n=42). Liver EDA mRNA was increased in patients with NASH compared with No NAFLD (P=0.05), but not NAFL. Plasma EDA levels were increased in NAFL and NASH compared with No NAFLD (P=0.03). Plasma EDA was related to worsening steatosis (P=0.02) and fibrosis (P=0.04), but not inflammation or hepatocellular ballooning. ROC analysis indicates that plasma EDA is not a reliable biomarker for NAFL or NASH. Plasma EDA was not increased in patients with type 2 diabetes and did not correlate with insulin resistance. Together, we show that plasma EDA is increased in NAFL and NASH, is related to worsening steatosis and fibrosis but is not a reliable biomarker for NASH. Circulating EDA is not associated with insulin resistance in human obesity. Clinical Trial Registration: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12615000875505, identifier ACTRN12615000875505.


Assuntos
Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Ectodisplasinas/sangue , Ectodisplasinas/metabolismo , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Biomarcadores/metabolismo , Biópsia , Índice de Massa Corporal , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Inflamação , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Obesidade/sangue , Obesidade/complicações , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Curva ROC , Sensibilidade e Especificidade
8.
Sci Transl Med ; 12(559)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878981

RESUMO

Intertissue communication is a fundamental feature of metabolic regulation, and the liver is central to this process. We have identified sparc-related modular calcium-binding protein 1 (SMOC1) as a glucose-responsive hepatokine and regulator of glucose homeostasis. Acute intraperitoneal administration of SMOC1 improved glycemic control and insulin sensitivity in mice without changes in insulin secretion. SMOC1 exerted its favorable glycemic effects by inhibiting adenosine 3',5'-cyclic monophosphate (cAMP)-cAMP-dependent protein kinase (PKA)-cAMP response element-binding protein (CREB) signaling in the liver, leading to decreased gluconeogenic gene expression and suppression of hepatic glucose output. Overexpression of SMOC1 in the liver or once-weekly intraperitoneal injections of a stabilized SMOC1-FC fusion protein induced durable improvements in glucose tolerance and insulin sensitivity in db/db mice, without adverse effects on adiposity, liver histopathology, or inflammation. Furthermore, circulating SMOC1 correlated with hepatic and systemic insulin sensitivity and was decreased in obese, insulin-resistant humans. Together, these findings identify SMOC1 as a potential pharmacological target for the management of glycemic control in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia , Glucose , Controle Glicêmico , Insulina , Fígado , Camundongos , Camundongos Endogâmicos C57BL
9.
FASEB J ; 33(12): 13267-13279, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31533003

RESUMO

Adipose tissue plays a major role in the regulation of systemic metabolic homeostasis, with the AP2 adaptor complex being important in clathrin-mediated endocytosis (CME) of various cell surface receptors, including glucose transporter 4, the insulin receptor, and ß-adrenergic receptors (ARs). One of the AP2 subunits, adaptor-related protein complex 2, α2 subunit (Ap2a2), has recently been identified as a peroxisome proliferator-activated receptor (PPAR)α target gene. The effects of PPARα on the AP2 adaptor complex and CME are unknown. We generated adipocyte-specific Ap2a2 knockout mice and investigated their metabolism when fed a standard chow or high-fat diet, without and with supplementation with the PPARα-agonist WY-14643 (WY). Although Ap2a2 deletion had only minor effects on glycaemic control, it led to substantial impairment in ß-adrenergic activation of lipolysis, as evidenced by a loss of cAMP response, PKA activation, and glycerol/fatty acid release. These differences were related to increased cell surface localization of the ß2- and ß3-ARs. Lipolytic defects were accompanied by impaired WY-mediated loss of fat mass and whole-body fat oxidation. This study demonstrates a novel role for PPARα in ß-adrenergic regulation of adipose tissue lipolysis and for adipose tissue in supplying adequate substrate to other peripheral tissues to accommodate the increase in systemic fatty acid oxidation that occurs upon treatment with PPARα agonists.-Montgomery, M. K., Bayliss, J., Keenan, S., Rhost, S., Ting, S. B., Watt, M. J. The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Tecido Adiposo/metabolismo , PPAR alfa/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Adipócitos/metabolismo , Animais , Immunoblotting , Lipólise/genética , Lipólise/fisiologia , Camundongos , Camundongos Knockout
10.
Obes Surg ; 29(1): 99-108, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229460

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), driven by the obesity epidemic, has become the most common form of liver disease. Despite this, there is controversy regarding the prevalence and severity of NAFLD in obesity. Obesity-related factors, such as increasing adiposity, metabolic disease and inflammation, may influence prevalence. We therefore prospectively measured NAFLD prevalence in obesity and studied factors associated with NAFLD. MATERIALS AND METHODS: We recruited consecutive bariatric patients. Intraoperative liver biopsies were taken. The liver, adipose tissue and serum were collected to measure inflammation. Adipocyte cell size was measured. NAFLD severity was correlated to body mass index (BMI), metabolic health and adipose characteristics. RESULTS: There were 216 participants; BMI 45.9 ± 8.9 kg/m2, age 44.4 ± 12.1 years, 75.5% female. Overall NAFLD prevalence was 74.1%, with 17.1% having non-alcoholic steatohepatitis (NASH) and/or steatofibrosis. Odds of NASH/steatofibrosis increased independently with BMI category (odds ratio (OR) 2.28-3.46, all p < 0.05) and metabolic disease (OR 3.79, p = 0.003). These odds markedly increased when both super obesity (BMI > 50) and metabolic disease were present (OR 9.71, p < 0.001). NASH/steatofibrosis prevalence was significantly greater with diabetes, hypertension and dyslipidemia. Although greater visceral adipocyte hypertrophy was evident in NASH/steatofibrosis, there was no significant association between adipose inflammation and NASH/steatofibrosis. CONCLUSION: NAFLD remains endemic in obesity; however, NASH/steatofibrosis are less common than previously reported. Worsening obesity and metabolic disease increase odds of NAFLD independently, with substantially compounded effect with both. These observations may help with risk stratification in obese populations. We were unable to delineate clear associations between adipose inflammation and NASH/steatofibrosis in this obese population. TRIAL REGISTRATION: Australian Clinical Trials Registry ( ACTRN12615000875505 ).


Assuntos
Tecido Adiposo/fisiopatologia , Índice de Massa Corporal , Inflamação , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Adulto , Cirurgia Bariátrica , Feminino , Humanos , Inflamação/complicações , Inflamação/epidemiologia , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade Mórbida/complicações , Obesidade Mórbida/epidemiologia , Obesidade Mórbida/cirurgia , Estudos Prospectivos
11.
Endocrinology ; 159(6): 2473-2483, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697769

RESUMO

Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.


Assuntos
Adaptação Fisiológica/genética , Proteína Relacionada com Agouti/metabolismo , Restrição Calórica , Carnitina O-Acetiltransferase/fisiologia , Comportamento Alimentar/fisiologia , Homeostase/genética , Neurônios/metabolismo , Animais , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condicionamento Físico Animal/fisiologia
12.
Diabetes ; 67(4): 594-606, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378767

RESUMO

Lipid droplets (LDs) are critical for the regulation of lipid metabolism, and dysregulated lipid metabolism contributes to the pathogenesis of several diseases, including type 2 diabetes. We generated mice with muscle-specific deletion of the LD-associated protein perilipin 5 (PLIN5, Plin5MKO ) and investigated PLIN5's role in regulating skeletal muscle lipid metabolism, intracellular signaling, and whole-body metabolic homeostasis. High-fat feeding induced changes in muscle lipid metabolism of Plin5MKO mice, which included increased fatty acid oxidation and oxidative stress but, surprisingly, a reduction in inflammation and endoplasmic reticulum (ER) stress. These muscle-specific effects were accompanied by whole-body glucose intolerance, adipose tissue insulin resistance, and reduced circulating insulin and C-peptide levels in Plin5MKO mice. This coincided with reduced secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle and liver, resulting in reduced circulating FGF21. Intriguingly, muscle-secreted factors from Plin5MKO , but not wild-type mice, reduced hepatocyte FGF21 secretion. Exogenous correction of FGF21 levels restored glycemic control and insulin secretion in Plin5MKO mice. These results show that changes in lipid metabolism resulting from PLIN5 deletion reduce ER stress in muscle, decrease FGF21 production by muscle and liver, and impair glycemic control. Further, these studies highlight the importance for muscle-liver cross talk in metabolic regulation.


Assuntos
Estresse do Retículo Endoplasmático/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Ácidos Graxos , Teste de Tolerância a Glucose , Homeostase , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Transdução de Sinais
13.
Int J Mol Sci ; 18(3)2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28273852

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect.


Assuntos
Acetilcisteína/análogos & derivados , Restrição Calórica , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores , Receptores de Grelina/metabolismo , Acetilcisteína/administração & dosagem , Acetilcisteína/farmacologia , Fatores Etários , Animais , Contagem de Células , Masculino , Camundongos , Camundongos Knockout , Receptores de Grelina/genética , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
15.
Endocrinology ; 157(10): 3946-3957, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27490185

RESUMO

Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation status. It is therefore critical to assess and state the acylation status of plasma ghrelin in all studies. In this study we tested the effect of des-acyl ghrelin administration on the hypothalamic-pituitary-adrenal axis and on anxiety-like behavior of mice lacking endogenous ghrelin and in ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no endogenous acyl ghrelin and high endogenous des-acyl ghrelin. Our results show des-acyl ghrelin produces an anxiogenic effect under nonstressed conditions, but this switches to an anxiolytic effect under stress. Des-acyl ghrelin influences plasma corticosterone under both nonstressed and stressed conditions, although c-fos activation in the paraventricular nucleus of the hypothalamus is not different. By contrast, GOAT KO are anxious under both nonstressed and stressed conditions, although this is not due to corticosterone release from the adrenals but rather from impaired feedback actions in the paraventricular nucleus of the hypothalamus, as assessed by c-fos activation. These results reveal des-acyl ghrelin treatment and GOAT deletion have differential effects on the hypothalamic-pituitary-adrenal axis and anxiety-like behavior, suggesting that anxiety-like behavior in GOAT KO mice is not due to high plasma des-acyl ghrelin.


Assuntos
Aciltransferases/metabolismo , Ansiedade/fisiopatologia , Grelina/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Acilação , Aciltransferases/genética , Animais , Ansiedade/psicologia , Feminino , Masculino , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
PLoS One ; 11(7): e0159381, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467571

RESUMO

Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson's Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin's neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Neurônios/enzimologia , Substância Negra/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Animais , Corpo Estriado/metabolismo , Ativação Enzimática , Camundongos , Camundongos Knockout , Substância Negra/metabolismo
17.
J Neurosci ; 36(10): 3049-63, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961958

RESUMO

Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKß1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Restrição Calórica , Grelina/metabolismo , Intoxicação por MPTP/patologia , Intoxicação por MPTP/prevenção & controle , Doença de Parkinson/fisiopatologia , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Grelina/genética , Grelina/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tirosina 3-Mono-Oxigenase/metabolismo
18.
J Neurochem ; 137(3): 460-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26872221

RESUMO

The gut hormone ghrelin is widely beneficial in many disease states. However, ghrelin exists in two distinctive isoforms, each with its own metabolic profile. In Parkinson's Disease (PD) acylated ghrelin administration is neuroprotective, however, the role of des-acylated ghrelin remains unknown. In this study, we wanted to identify the relative contribution each isoform plays using the MPTP model of PD. Chronic administration of acylated ghrelin in mice lacking both isoforms of ghrelin (Ghrelin KO) attenuated the MPTP-induced loss on tyrosine hydroxylase (TH) neuronal number and volume and TH protein expression in the nigrostriatal pathway. Moreover, acylated ghrelin reduced the increase in glial fibrillary acidic protein and Ionized calcium binding adaptor molecule 1 microglia in the substantia nigra. However, injection of acylated ghrelin also elevated plasma des-acylated ghrelin, indicating in vivo deacetylation. Next, we chronically administered des-acylated ghrelin to Ghrelin KO mice and observed no neuroprotective effects in terms of TH cell number, TH protein expression, glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 cell number. The lack of a protective effect was mirrored in ghrelin-O-acyltransferase KO mice, which lack the ability to acylate ghrelin and consequently these mice have chronically increased plasma des-acyl ghrelin. Plasma corticosterone was elevated in ghrelin-O-acyltransferase KO mice and with des-acylated ghrelin administration. Overall, our studies suggest that acylated ghrelin is the isoform responsible for in vivo neuroprotection and that pharmacological approaches preventing plasma conversion from acyl ghrelin to des-acyl ghrelin may have clinical efficacy to help slow or prevent the debilitating effects of PD. Ghrelin exists in the plasma as acyl and des-acyl ghrelin. We determined the form responsible for in vivo neuroprotection in a mouse model of Parkinson's disease. Although exogenous acyl ghrelin is deacylated in situ to des-acyl, only acyl ghrelin was neuroprotective by attenuating dopamine cell loss and glial activation. Acyl ghrelin is a therapeutic option to reduce Parkinson's Disease progression. Cover Image for this issue: doi: 10.1111/jnc.13316.


Assuntos
Grelina/análogos & derivados , Grelina/farmacologia , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/prevenção & controle , Acilação , Aciltransferases/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Grelina/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Vias Neurais/patologia , Neurônios/patologia , Fármacos Neuroprotetores/química , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Endocrinology ; 156(5): 1701-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25742051

RESUMO

The hypothalamic arcuate nucleus (ARC) contains 2 key neural populations, neuropeptide Y (NPY) and proopiomelanocortin (POMC), and, together with orexin neurons in the lateral hypothalamus, plays an integral role in energy homeostasis. However, no studies have examined total neuronal number and volume after high-fat diet (HFD) exposure using sophisticated stereology. We used design-based stereology to estimate NPY and POMC neuronal number and volume, as well as glial fibrillary acidic protein (astrocyte marker) and ionized calcium-binding adapter molecule 1 (microglia marker) cell number in the ARC; as well as orexin neurons in the lateral hypothalamus. Stereological analysis indicated approximately 8000 NPY and approximately 9000 POMC neurons in the ARC, and approximately 7500 orexin neurons in the lateral hypothalamus. HFD exposure did not affect total neuronal number in any population. However, HFD significantly increased average NPY cell volume and affected NPY and POMC cell volume distribution. HFD reduced orexin cell volume but had a bimodal effect on volume distribution with increased cells at relatively small volumes and decreased cells with relatively large volumes. ARC glial fibrillary acidic protein cells increased after 2 months on a HFD, although no significant difference after 6 months on chow diet or HFD was observed. No differences in ARC ionized calcium-binding adapter molecule 1 cell number were observed in any group. Thus, HFD affects ARC NPY or POMC neuronal cell volume number not cell number. Our results demonstrate the importance of stereology to perform robust unbiased analysis of cell number and volume. These data should be an empirical baseline reference to which future studies are compared.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Astrócitos/citologia , Tamanho Celular , Microglia/citologia , Neurônios/citologia , Obesidade , Animais , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Dieta Hiperlipídica , Proteína Glial Fibrilar Ácida , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Pró-Opiomelanocortina/metabolismo
20.
Endocrinology ; 155(3): 840-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424063

RESUMO

In this study we examined fasted and refed cfos activation in cortical, brainstem, and hypothalamic brain regions associated with appetite regulation. We examined a number of time points during refeeding to gain insight into the temporal pattern of neuronal activation and changes in endocrine parameters associated with fasting and refeeding. In response to refeeding, blood glucose and plasma insulin returned to basal levels within 30 minutes, whereas plasma nonesterified fatty acids and leptin returned to basal levels after 1 and 2 hours, respectively. Within the hypothalamic arcuate nucleus (ARC), fasting increased cfos activation in ∼25% of neuropeptide Y neurons, which was terminated 1 hour after refeeding. Fasting had no effect on cfos activation in pro-opiomelanocortin neurons; however, 1 and 2 hours of refeeding significantly activated ∼20% of ARC pro-opiomelanocortin neurons. Acute refeeding (30, 60, and 120 minutes), but not fasting, increased cfos activation in the nucleus accumbens, the cingulate cortex (but not the insular cortex), the medial and lateral parabrachial nucleus, the nucleus of the solitary tract, the area postrema, the dorsal raphe, and the ventromedial nucleus of the hypothalamus. After 6 hours of refeeding, cfos activity was reduced in the majority of these regions compared with that at earlier time points. Our data indicate that acute refeeding, rather than long-term fasting, activates cortical, brainstem, and hypothalamic neural circuits associated with appetite regulation and reward processing. Although the hypothalamic ARC remains a critical sensory node detecting changes in the metabolic state and feedback during fasting and acute refeeding, our results also reveal the temporal pattern in cfos activation in cortical and brainstem areas implicated in the control of appetite and body weight regulation.


Assuntos
Tronco Encefálico/metabolismo , Córtex Cerebral/metabolismo , Ingestão de Alimentos/fisiologia , Privação de Alimentos , Hipotálamo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Regulação do Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/metabolismo , Peso Corporal , Ácidos Graxos/sangue , Regulação da Expressão Gênica , Giro do Cíngulo/metabolismo , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Pró-Opiomelanocortina/metabolismo , Núcleos da Rafe/metabolismo , Núcleo Solitário/metabolismo , Fatores de Tempo , Núcleo Hipotalâmico Ventromedial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...