Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37042517

RESUMO

Salmonella enterica serovar Enteritidis is one of the most frequent causes of Salmonellosis globally and is commonly transmitted from animals to humans by the consumption of contaminated foodstuffs. In the UK and many other countries in the Global North, a significant proportion of cases are caused by the consumption of imported food products or contracted during foreign travel, therefore, making the rapid identification of the geographical source of new infections a requirement for robust public health outbreak investigations. Herein, we detail the development and application of a hierarchical machine learning model to rapidly identify and trace the geographical source of S. Enteritidis infections from whole genome sequencing data. 2313 S. Enteritidis genomes, collected by the UKHSA between 2014-2019, were used to train a 'local classifier per node' hierarchical classifier to attribute isolates to four continents, 11 sub-regions, and 38 countries (53 classes). The highest classification accuracy was achieved at the continental level followed by the sub-regional and country levels (macro F1: 0.954, 0.718, 0.661, respectively). A number of countries commonly visited by UK travelers were predicted with high accuracy (hF1: >0.9). Longitudinal analysis and validation with publicly accessible international samples indicated that predictions were robust to prospective external datasets. The hierarchical machine learning framework provided granular geographical source prediction directly from sequencing reads in <4 min per sample, facilitating rapid outbreak resolution and real-time genomic epidemiology. The results suggest additional application to a broader range of pathogens and other geographically structured problems, such as antimicrobial resistance prediction, is warranted.


Assuntos
Infecções por Salmonella , Salmonella enterica , Animais , Humanos , Salmonella enteritidis/genética , Estudos Prospectivos , Infecções por Salmonella/epidemiologia , Surtos de Doenças , Aprendizado de Máquina
2.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191377

RESUMO

Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.


Assuntos
Anti-Infecciosos , Campylobacter , Animais , Bactérias/genética , Evolução Biológica , Campylobacter/genética , Transferência Genética Horizontal , Filogenia
3.
PLoS Genet ; 17(9): e1009829, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582435

RESUMO

Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.


Assuntos
Campylobacter/genética , Evolução Molecular , Campylobacter/classificação , Genes Bacterianos , Variação Genética , Filogenia , Especificidade da Espécie
4.
Commun Biol ; 4(1): 1015, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462533

RESUMO

Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition.


Assuntos
Infecções por Campylobacter/epidemiologia , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Genótipo , Síndrome do Intestino Irritável/epidemiologia , Adulto , Infecções por Campylobacter/microbiologia , Feminino , Humanos , Síndrome do Intestino Irritável/microbiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Virulência/genética
6.
Nat Commun ; 12(1): 765, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536414

RESUMO

Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Escherichia coli/genética , Evolução Molecular , Genoma Bacteriano/genética , Doenças das Aves Domésticas/prevenção & controle , Animais , Galinhas , Escherichia coli/classificação , Escherichia coli/patogenicidade , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Genes Bacterianos , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Filogenia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/microbiologia , Virulência/genética
7.
PLoS Negl Trop Dis ; 14(8): e0008533, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776937

RESUMO

Campylobacter is the leading bacterial cause of gastroenteritis worldwide and its incidence is especially high in low- and middle-income countries (LMIC). Disease epidemiology in LMICs is different compared to high income countries like the USA or in Europe. Children in LMICs commonly have repeated and chronic infections even in the absence of symptoms, which can lead to deficits in early childhood development. In this study, we sequenced and characterized C. jejuni (n = 62) from a longitudinal cohort study of children under the age of 5 with and without diarrheal symptoms, and contextualized them within a global C. jejuni genome collection. Epidemiological differences in disease presentation were reflected in the genomes, specifically by the absence of some of the most common global disease-causing lineages. As in many other countries, poultry-associated strains were likely a major source of human infection but almost half of local disease cases (15 of 31) were attributable to genotypes that are rare outside of Peru. Asymptomatic infection was not limited to a single (or few) human adapted lineages but resulted from phylogenetically divergent strains suggesting an important role for host factors in the cryptic epidemiology of campylobacteriosis in LMICs.


Assuntos
Infecções Assintomáticas , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Animais , Infecções por Campylobacter/diagnóstico , Infecções por Campylobacter/fisiopatologia , Campylobacter jejuni/classificação , Pré-Escolar , Estudos de Coortes , Diarreia/epidemiologia , Genômica , Genótipo , Interações Hospedeiro-Parasita , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Tipagem Molecular , Tipagem de Sequências Multilocus , Peru/epidemiologia , Filogenia , Aves Domésticas/microbiologia
8.
Front Microbiol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695083

RESUMO

Vibrio anguillarum is the causative agent of vibriosis in many species important to aquaculture. We generated whole genome sequence (WGS) data on a diverse collection of 64 V. anguillarum strains, which we supplemented with 41 publicly available genomes to produce a combined dataset of 105 strains. These WGS data resolved six major lineages (L1-L6), and the additional use of multilocus sequence analysis (MLSA) clarified the association of L1 with serotype O1 and Salmonidae hosts (salmon/trout), and L2 with serotypes O2a/O2b/O2c and Gadidae hosts (cod). Our analysis also revealed a large-scale homologous replacement of 526-kb of core genome in an L2 strain from a con-specific donor. Although the strains affected by this recombination event are exclusively associated with Gadidae, we find no clear genetic evidence that it has played a causal role in host specialism. Whilst it is established that Vibrio species freely recombine, to our knowledge this is the first report of a contiguous recombinational replacement of this magnitude in any Vibrio genome. We also note a smaller accessory region of high single nucleotide polymorphism (SNP) density and gene content variation that contains lipopolysaccharide biosynthesis genes which may play a role in determining serotype.

9.
Proc Natl Acad Sci U S A ; 117(20): 11018-11028, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366649

RESUMO

Modern agriculture has dramatically changed the distribution of animal species on Earth. Changes to host ecology have a major impact on the microbiota, potentially increasing the risk of zoonotic pathogens being transmitted to humans, but the impact of intensive livestock production on host-associated bacteria has rarely been studied. Here, we use large isolate collections and comparative genomics techniques, linked to phenotype studies, to understand the timescale and genomic adaptations associated with the proliferation of the most common food-born bacterial pathogen (Campylobacter jejuni) in the most prolific agricultural mammal (cattle). Our findings reveal the emergence of cattle specialist C. jejuni lineages from a background of host generalist strains that coincided with the dramatic rise in cattle numbers in the 20th century. Cattle adaptation was associated with horizontal gene transfer and significant gene gain and loss. This may be related to differences in host diet, anatomy, and physiology, leading to the proliferation of globally disseminated cattle specialists of major public health importance. This work highlights how genomic plasticity can allow important zoonotic pathogens to exploit altered niches in the face of anthropogenic change and provides information for mitigating some of the risks posed by modern agricultural systems.


Assuntos
Agricultura , Campylobacter jejuni/genética , Campylobacter jejuni/fisiologia , Especificidade de Hospedeiro , Especialização , Adaptação Fisiológica/genética , Animais , Biofilmes , Bovinos/microbiologia , Bovinos/fisiologia , Dieta , Evolução Molecular , Transferência Genética Horizontal , Genômica , Recombinação Homóloga , Interações Hidrofóbicas e Hidrofílicas , Mutagênese , Fenótipo , Recombinação Genética
10.
Genome Biol Evol ; 11(11): 3240-3251, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665331

RESUMO

Klebsiella pneumoniae (Kp) is one of the most important nosocomial pathogens worldwide, able to cause multiorgan infections and hospital outbreaks. One of the most widely disseminated lineage of Kp is the clonal group 258 (CG258), which includes the highly resistant "high-risk" sequence types ST258 and ST11. Genomic investigations revealed that very large recombination events have occurred during the emergence of Kp lineages. A striking example is provided by ST258, which has undergone a recombination event that replaced over 1 Mb of the genome with DNA from an unrelated Kp donor. Although several examples of this phenomenon have been documented in Kp and other bacterial species, the significance of these very large recombination events for the emergence of either hypervirulent or resistant clones remains unclear. Here, we present an analysis of 834 Kp genomes that provides data on the frequency of these very large recombination events (defined as those involving >100 kb), their distribution within the genome, and the dynamics of gene flow within the Kp population. We note that very large recombination events occur frequently, and in multiple lineages, and that the majority of recombinational exchanges are clustered within two overlapping genomic regions, which have been involved by recombination events with different frequencies. Our results also indicate that certain lineages are more likely to act as donors to CG258. Furthermore, comparison of gene content in CG258 and non-CG258 strains agrees with this pattern, suggesting that the success of a large recombination depends on gene composition in the exchanged genomic portion.


Assuntos
Klebsiella pneumoniae/genética , Recombinação Genética , Células Clonais/microbiologia , Genoma Bacteriano , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia
11.
Gigascience ; 8(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598686

RESUMO

BACKGROUND: Cataloguing the distribution of genes within natural bacterial populations is essential for understanding evolutionary processes and the genetic basis of adaptation. Advances in whole genome sequencing technologies have led to a vast expansion in the amount of bacterial genomes deposited in public databases. There is a pressing need for software solutions which are able to cluster, catalogue and characterise genes, or other features, in increasingly large genomic datasets. RESULTS: Here we present a pangenomics toolbox, PIRATE (Pangenome Iterative Refinement and Threshold Evaluation), which identifies and classifies orthologous gene families in bacterial pangenomes over a wide range of sequence similarity thresholds. PIRATE builds upon recent scalable software developments to allow for the rapid interrogation of thousands of isolates. PIRATE clusters genes (or other annotated features) over a wide range of amino acid or nucleotide identity thresholds and uses the clustering information to rapidly identify paralogous gene families and putative fission/fusion events. Furthermore, PIRATE orders the pangenome using a directed graph, provides a measure of allelic variation, and estimates sequence divergence for each gene family. CONCLUSIONS: We demonstrate that PIRATE scales linearly with both number of samples and computation resources, allowing for analysis of large genomic datasets, and compares favorably to other popular tools. PIRATE provides a robust framework for analysing bacterial pangenomes, from largely clonal to panmictic species.


Assuntos
Genoma Bacteriano , Genômica/métodos , Análise por Conglomerados
12.
Environ Microbiol ; 21(12): 4597-4613, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31385413

RESUMO

The use of antimicrobials in human and veterinary medicine has coincided with a rise in antimicrobial resistance (AMR) in the food-borne pathogens Campylobacter jejuni and Campylobacter coli. Faecal contamination from the main reservoir hosts (livestock, especially poultry) is the principal route of human infection but little is known about the spread of AMR among source and sink populations. In particular, questions remain about how Campylobacter resistomes interact between species and hosts, and the potential role of sewage as a conduit for the spread of AMR. Here, we investigate the genomic variation associated with AMR in 168 C. jejuni and 92 C. coli strains isolated from humans, livestock and urban effluents in Spain. AMR was tested in vitro and isolate genomes were sequenced and screened for putative AMR genes and alleles. Genes associated with resistance to multiple drug classes were observed in both species and were commonly present in multidrug-resistant genomic islands (GIs), often located on plasmids or mobile elements. In many cases, these loci had alleles that were shared among C. jejuni and C. coli consistent with horizontal transfer. Our results suggest that specific antibiotic resistance genes have spread among Campylobacter isolated from humans, animals and the environment.


Assuntos
Campylobacter coli/genética , Campylobacter jejuni/genética , Farmacorresistência Bacteriana Múltipla/genética , Pool Gênico , Transferência Genética Horizontal , Gado/microbiologia , Esgotos/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Campylobacter coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Aves Domésticas/microbiologia , Espanha
13.
Evol Appl ; 12(5): 878-887, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31080502

RESUMO

Bacteria interact with a multitude of other organisms, many of which produce antimicrobials. Selection for resistance to these antimicrobials has the potential to result in resistance to clinical antibiotics when active compounds target the same bacterial pathways. The possibility of such cross-resistance between natural antimicrobials and antibiotics has to our knowledge received very little attention. The antimicrobial activity of extracts from seaweeds, known to be prolific producers of antimicrobials, is here tested against Staphylococcus aureus isolates with varied clinical antibiotic resistance profiles. An overall effect consistent with cross-resistance is demonstrated, with multidrug-resistant S. aureus strains being on average more resistant to seaweed extracts. This pattern could potentially indicate that evolution of resistance to antimicrobials in the natural environment could lead to resistance against clinical antibiotics. However, patterns of antimicrobial activity of individual seaweed extracts vary considerably and include collateral sensitivity, where increased resistance to a particular antibiotic is associated with decreased resistance to a particular seaweed extract. Our correlation-based methods allow the identification of antimicrobial extracts bearing most promise for downstream active compound identification and pharmacological testing.

14.
J Antimicrob Chemother ; 74(7): 1776-1785, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30929020

RESUMO

OBJECTIVES: From 2012 to 2015, a sudden significant increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) was observed in the Capital Region of Denmark. Clonal relatedness of VREfm and vancomycin-susceptible E. faecium (VSEfm) was investigated, transmission events between hospitals were identified and the pan-genome and plasmids from the largest VREfm clonal group were characterized. METHODS: WGS of 1058 E. faecium isolates was carried out on the Illumina platform to perform SNP analysis and to identify the pan-genome. One isolate was also sequenced on the PacBio platform to close the genome. Epidemiological data were collected from laboratory information systems. RESULTS: Phylogeny of 892 VREfm and 166 VSEfm revealed a polyclonal structure, with a single clonal group (ST80) accounting for 40% of the VREfm isolates. VREfm and VSEfm co-occurred within many clonal groups; however, no VSEfm were related to the dominant VREfm group. A similar vanA plasmid was identified in ≥99% of isolates belonging to the dominant group and 69% of the remaining VREfm. Ten plasmids were identified in the completed genome, and ∼29% of this genome consisted of dispensable accessory genes. The size of the pan-genome among isolates in the dominant group was 5905 genes. CONCLUSIONS: Most probably, VREfm emerged owing to importation of a successful VREfm clone which rapidly transmitted to the majority of hospitals in the region whilst simultaneously disseminating a vanA plasmid to pre-existing VSEfm. Acquisition of a heterogeneous accessory genome may account for the success of this clone by facilitating adaptation to new environmental challenges.


Assuntos
Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Enterococcus faecium/isolamento & purificação , Genótipo , Infecções por Bactérias Gram-Positivas/epidemiologia , Plasmídeos/análise , Enterococos Resistentes à Vancomicina/isolamento & purificação , Sequenciamento Completo do Genoma , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Dinamarca/epidemiologia , Transmissão de Doença Infecciosa , Enterococcus faecium/classificação , Enterococcus faecium/genética , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/transmissão , Hospitais , Humanos , Epidemiologia Molecular , Tipagem Molecular , Filogenia , Enterococos Resistentes à Vancomicina/classificação , Enterococos Resistentes à Vancomicina/genética
15.
Environ Microbiol ; 21(3): 1113-1123, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30637959

RESUMO

Our ability to predict evolutionary trajectories of pathogens in response to antibiotic pressure is one of the promising leverage to fight against the present antibiotic resistance worldwide crisis. Yet, few studies tackled this question in situ at the outbreak level, due to the difficulty to link a given pathogenic clone evolution with its precise antibiotic exposure over time. In this study, we monitored the real-time evolution of an Aeromonas salmonicida clone in response to successive antibiotic and vaccine therapies in a commercial fish farm. The clone was responsible for a four-year outbreak of furunculosis within a Recirculating Aquaculture System Salmo salar farm in China, and we reconstructed the precise tempo of mobile genetic elements (MGEs) acquisition events during this period. The resistance profile provided by the acquired MGEs closely mirrored the antibiotics used to treat the outbreak, and we evidenced that two subclonal groups developed similar resistances although unrelated MGE acquisitions. Finally, we also demonstrated the efficiency of vaccination in outbreak management and its positive effect on antibiotic resistance prevalence. Our study provides unprecedented knowledge critical to understand evolutionary trajectories of resistant pathogens outside the laboratory.


Assuntos
Aeromonas salmonicida/fisiologia , Antibacterianos/farmacologia , Evolução Molecular Direcionada , Doenças dos Peixes/microbiologia , Aeromonas salmonicida/efeitos dos fármacos , Animais , Aquicultura , China , Resistência Microbiana a Medicamentos/genética , Furunculose/microbiologia
16.
Microb Genom ; 4(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040063

RESUMO

Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD), which is a commercially important disease of farmed salmonids. Typing by conventional methods provides limited information on the evolution and spread of this pathogen, as there is a low level of standing variation within the R. salmoninarum population. Here, we apply whole-genome sequencing to 42 R. salmoninarum isolates from Chile, primarily from salmon farms, in order to understand the epidemiology of BKD in this country. The patterns of genomic variation are consistent with multiple introductions to Chile, followed by rapid dissemination over a 30 year period. The estimated dates of introduction broadly coincide with major events in the development of the Chilean aquaculture industry. We find evidence for significant barriers to transmission of BKD in the Chilean salmon production chain that may also be explained by previously undescribed signals of host tropism in R. salmoninarum. Understanding the genomic epidemiology of BKD can inform disease intervention and improve sustainability of the economically important salmon industry. This article contains data hosted by Microreact.


Assuntos
Aquicultura , Micrococcaceae/isolamento & purificação , Salmão/microbiologia , Animais , Chile , Micrococcaceae/classificação , Micrococcaceae/genética , Epidemiologia Molecular , Filogenia , Salmonidae , Sequenciamento Completo do Genoma
17.
Gigascience ; 7(4): 1-11, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635296

RESUMO

Background: The concept of the "pan-genome," which refers to the total complement of genes within a given sample or species, is well established in bacterial genomics. Rapid and scalable pipelines are available for managing and interpreting pan-genomes from large batches of annotated assemblies. However, despite overwhelming evidence that variation in intergenic regions in bacteria can directly influence phenotypes, most current approaches for analyzing pan-genomes focus exclusively on protein-coding sequences. Findings: To address this we present Piggy, a novel pipeline that emulates Roary except that it is based only on intergenic regions. A key utility provided by Piggy is the detection of highly divergent ("switched") intergenic regions (IGRs) upstream of genes. We demonstrate the use of Piggy on large datasets of clinically important lineages of Staphylococcus aureus and Escherichia coli. Conclusions: For S. aureus, we show that highly divergent (switched) IGRs are associated with differences in gene expression and we establish a multilocus reference database of IGR alleles (igMLST; implemented in BIGSdb).


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Genômica/métodos , Staphylococcus aureus/genética , DNA Intergênico
18.
Genome Announc ; 5(27)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684561

RESUMO

The draft genome sequences of 5 type strains of species of the halophilic genus Salinivibrio and 29 new isolates from different hypersaline habitats belonging to the genus Salinivibrio have been determined. The genomes have 3,123,148 to 3,641,359 bp, a G+C content of 49.2 to 50.9%, and 2,898 to 3,404 open reading frames (ORFs).

19.
Genetics ; 206(1): 363-376, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28280056

RESUMO

Nontranslated intergenic regions (IGRs) compose 10-15% of bacterial genomes, and contain many regulatory elements with key functions. Despite this, there are few systematic studies on the strength and direction of selection operating on IGRs in bacteria using whole-genome sequence data sets. Here we exploit representative whole-genome data sets from six diverse bacterial species: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli We compare patterns of selection operating on IGRs using two independent methods: the proportion of singleton mutations and the dI/dS ratio, where dI is the number of intergenic SNPs per intergenic site. We find that the strength of purifying selection operating over all intergenic sites is consistently intermediate between that operating on synonymous and nonsynonymous sites. Ribosome binding sites and noncoding RNAs tend to be under stronger selective constraint than promoters and Rho-independent terminators. Strikingly, a clear signal of purifying selection remains even when all these major categories of regulatory elements are excluded, and this constraint is highest immediately upstream of genes. While a paucity of variation means that the data for M. tuberculosis are more equivocal than for the other species, we find strong evidence for positive selection within promoters of this species. This points to a key adaptive role for regulatory changes in this important pathogen. Our study underlines the feasibility and utility of gauging the selective forces operating on bacterial IGRs from whole-genome sequence data, and suggests that our current understanding of the functionality of these sequences is far from complete.


Assuntos
DNA Intergênico/genética , Genoma Bacteriano , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico , Sequência Conservada/genética , Escherichia coli/genética , Evolução Molecular , Klebsiella pneumoniae/genética , Mycobacterium tuberculosis/genética , Ribossomos/genética , Salmonella enterica/genética , Staphylococcus aureus/genética , Streptococcus pneumoniae/genética
20.
Gigascience ; 6(3): 1-6, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327913

RESUMO

Background: The Oxford Nanopore Technologies MinION(TM) is a mobile DNA sequencer that can produce long read sequences with a short turn-around time. Here we report the first demonstration of single contig genome assembly using Oxford Nanopore native barcoding when applied to a multiplexed library of 12 samples and combined with existing Illumina short read data. This paves the way for the closure of multiple bacterial genomes from a single MinION(TM) sequencing run, given the availability of existing short read data. The strain we used, MHO_001, represents the important community-acquired methicillin-resistant Staphylococcus aureus lineage USA300. Findings: Using a hybrid assembly of existing short read and barcoded long read sequences from multiplexed data, we completed a genome of the S. aureus USA300 strain MHO_001. The long read data represented only ∼5% to 10% of an average MinION(TM) run (∼7x genomic coverage), but, using standard tools, this was sufficient to complete the circular chromosome of S. aureus strain MHO_001 (2.86 Mb) and two complete plasmids (27 Kb and 3 Kb). Minor differences were noted when compared to USA300 reference genome, USA300_FPR3757, including the translocation, loss, and gain of mobile genetic elements. Conclusion: Here we demonstrate that MinION(TM) reads, multiplexed using native barcoding, can be used in combination with short read data to fully complete a bacterial genome. The ability to complete multiple genomes, for which short read data is already available, from a single MinION(TM) run is set to impact our understanding of accessory genome content, plasmid diversity, and genome rearrangements.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , DNA Bacteriano/genética , Biblioteca Genômica , Genômica/métodos , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Reprodutibilidade dos Testes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...