Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 173: 105831, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908744

RESUMO

Locus coeruleus (LC) is among the first brain areas to degenerate in Alzheimer's disease and Parkinson's disease; however, the underlying causes for the vulnerability of LC neurons are not well defined. Here we report a novel mechanism of degeneration of LC neurons caused by loss of the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2). GPT2 Deficiency is a newly-recognized childhood neurometabolic disorder. The GPT2 enzyme regulates cell growth through replenishment of tricarboxylic acid (TCA) cycle intermediates and modulation of amino acid metabolism. In Gpt2-null mice, we observe an early loss of tyrosine hydroxylase (TH)-positive neurons in LC and reduced soma size at postnatal day 18. Gpt2-null LC shows selective positive Fluoro-Jade C staining. Neuron loss is accompanied by selective, prominent microgliosis and astrogliosis in LC. We observe reduced noradrenergic projections to and norepinephrine levels in hippocampus and spinal cord. Whole cell recordings in Gpt2-null LC slices show reduced soma size and abnormal action potentials with altered firing kinetics. Strikingly, we observe early decreases in phosphorylated S6 in Gpt2-null LC, preceding prominent p62 aggregation, increased LC3B-II to LC3B-I ratio, and neuronal loss. These data are consistent with a possible mechanism involving deficiency in protein synthesis and cell growth, associated subsequently with abnormal autophagy and neurodegeneration. As compared to the few genetic animal models with LC degeneration, loss of LC neurons in Gpt2-null mice is developmentally the earliest. Early neuron loss in LC in a model of human neurometabolic disease provides important clues regarding the metabolic vulnerability of LC and may lead to new therapeutic targets.


Assuntos
Locus Cerúleo , Tirosina 3-Mono-Oxigenase , Aminoácidos/metabolismo , Animais , Criança , Glutamatos/metabolismo , Humanos , Locus Cerúleo/metabolismo , Camundongos , Degeneração Neural/patologia , Norepinefrina/metabolismo , Piruvatos/metabolismo , Transaminases/metabolismo , Ácidos Tricarboxílicos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Hum Mol Genet ; 31(4): 587-603, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34519342

RESUMO

The metabolic needs for postnatal growth of the human nervous system are vast. Recessive loss-of-function mutations in the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2) in humans cause postnatal undergrowth of brain, and cognitive and motor disability. We demonstrate that GPT2 governs critical metabolic mechanisms in neurons required for neuronal growth and survival. These metabolic processes include neuronal alanine synthesis and anaplerosis, the replenishment of tricarboxylic acid (TCA) cycle intermediates. We performed metabolomics across postnatal development in Gpt2-null mouse brain to identify the trajectory of dysregulated metabolic pathways: alterations in alanine occur earliest; followed by reduced TCA cycle intermediates and reduced pyruvate; followed by elevations in glycolytic intermediates and amino acids. Neuron-specific deletion of GPT2 in mice is sufficient to cause motor abnormalities and death pre-weaning, a phenotype identical to the germline Gpt2-null mouse. Alanine biosynthesis is profoundly impeded in Gpt2-null neurons. Exogenous alanine is necessary for Gpt2-null neuronal survival in vitro but is not needed for Gpt2-null astrocytes. Dietary alanine supplementation in Gpt2-null mice enhances animal survival and improves the metabolic profile of Gpt2-null brain but does not alone appear to correct motor function. In surviving Gpt2-null animals, we observe smaller upper and lower motor neurons in vivo. We also observe selective death of lower motor neurons in vivo with worsening motor behavior with age. In conclusion, these studies of the pathophysiology of GPT2 Deficiency have identified metabolic mechanisms that are required for neuronal growth and that potentially underlie selective neuronal vulnerabilities in motor neurons.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Alanina , Alanina Transaminase , Animais , Humanos , Camundongos , Camundongos Knockout , Neurônios , Ácido Pirúvico , Transaminases/genética
3.
Hum Genet ; 138(10): 1183-1200, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31471722

RESUMO

The glutamate pyruvate transaminase 2 (GPT2) gene produces a nuclear-encoded mitochondrial enzyme that catalyzes the reversible transfer of an amino group from glutamate to pyruvate, generating alanine and alpha-ketoglutarate. Recessive mutations in GPT2 have been recently identified in a new syndrome involving intellectual and developmental disability (IDD), postnatal microcephaly, and spastic paraplegia. We have identified additional families with recessive GPT2 mutations and expanded the phenotype to include small stature. GPT2 loss-of-function mutations were identified in four families, nine patients total, including: a homozygous mutation in one child [c.775T>C (p.C259R)]; compound heterozygous mutations in two siblings [c.812A>C (p.N271T)/c.1432_1433delGT (p.V478Rfs*73)]; a novel homozygous, putative splicing mutation [c.1035C>T (p.G345=)]; and finally, a recurrent mutation, previously identified in a distinct family [c.1210C>T (p.R404*)]. All patients were diagnosed with IDD. A majority of patients had remarkably small stature throughout development, many < 1st percentile for height and weight. Given the potential biological function of GPT2 in cellular growth, this phenotype is strongly suggestive of a newly identified clinical susceptibility. Further, homozygous GPT2 mutations manifested in at least 2 of 176 families with IDD (approximately 1.1%) in a Pakistani cohort, thereby representing a relatively common cause of recessive IDD in this population, with recurrence of the p.R404* mutation in this population. Based on variants in the ExAC database, we estimated that approximately 1 in 248 individuals are carriers of moderately or severely deleterious variants in GPT2.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Genes Recessivos , Predisposição Genética para Doença , Mutação , Fenótipo , Transaminases/genética , Adolescente , Alelos , Substituição de Aminoácidos , Deficiências do Desenvolvimento/metabolismo , Ativação Enzimática , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Genética Populacional , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Linhagem , Conformação Proteica , Sítios de Splice de RNA , Análise de Sequência de DNA , Relação Estrutura-Atividade , Transaminases/química , Transaminases/metabolismo
4.
Am J Med Genet A ; 179(11): 2284-2291, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403263

RESUMO

Aspartate-glutamate carrier 1 (AGC1) is one of two exchangers within the malate-aspartate shuttle. AGC1 is encoded by the SLC25A12 gene. Three patients with pathogenic variants in SLC25A12 have been reported in the literature. These patients were clinically characterized by neurodevelopmental delay, epilepsy, hypotonia, cerebral atrophy, and hypomyelination; however, there has been discussion in the literature as to whether this hypomyelination is primary or secondary to a neuronal defect. Here we report a 12-year-old patient with variants in SLC25A12 and magnetic resonance imaging (MRI) at multiple ages. Novel compound heterozygous, recessive variants in SLC25A12 were identified: c.1295C>T (p.A432V) and c.1447-2_1447-1delAG. Clinical presentation is characterized by severe intellectual disability, nonambulatory, nonverbal status, hypotonia, epilepsy, spastic quadriplegia, and a happy disposition. The serial neuroimaging findings are notable for cerebral atrophy with white matter involvement, namely, early hypomyelination yet subsequent progression of myelination. The longitudinal MRI findings are most consistent with a leukodystrophy of the leuko-axonopathy category, that is, white matter abnormalities that are most suggestive of mechanisms that result from primary neuronal defects. We present here the first case of a patient with compound heterozygous variants in SLC25A12, including brain MRI findings, in the oldest individual reported to date with this neurogenetic condition.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Imageamento por Ressonância Magnética , Proteínas de Transporte da Membrana Mitocondrial/genética , Fenótipo , Criança , Análise Mutacional de DNA , Diagnóstico Diferencial , Progressão da Doença , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Linhagem , Conformação Proteica , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 113(38): E5598-607, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601654

RESUMO

Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.


Assuntos
Encéfalo/crescimento & desenvolvimento , Mitocôndrias/enzimologia , Doenças do Sistema Nervoso/genética , Transaminases/genética , Sequência de Aminoácidos/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ciclo do Ácido Cítrico/genética , Homozigoto , Humanos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Mitocôndrias/patologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/patologia , Fenótipo , Ácido Pirúvico/metabolismo , Transaminases/metabolismo
7.
Eur Neuropsychopharmacol ; 25(11): 2022-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26409296

RESUMO

Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (p<0.0001). This difference may at least in part be a consequence of slightly bigger size of the DRN 5-HT neurons in Tph2(-/-) mice (approximately 10%, p<0.0001). Taken together, these findings show that 5-HT neurons acquire and maintain their signature firing properties independently of the presence of their principal neurotransmitter 5-HT, displaying an unexpected functional resilience to complete brain 5-HT deficiency.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Triptofano Hidroxilase/deficiência , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleo Dorsal da Rafe/citologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Capacitância Elétrica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Knockout , Microscopia de Fluorescência , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Triptofano Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...