Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 215(Pt 2): 114374, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150444

RESUMO

Vermicomposting is recommended as an eco-friendly technology for an organic amendment to avoid the excessive use of inorganic fertilizers, which are causing environmental pollution. Here, this study evaluated soil fertility and plant growth after vermicompost amendment using reclaimed wetland plants and manure. A pot experiment was conducted to assess the seven treatments for nutrient recovery and plant growth: a control group without any fertilization (CK); four groups with vermicompost prepared from different ratios of ecological wetland plant residues, maize, and pig manure (V1, 4:6; V2, 5:5; V3, 6:6; and V4, 7:3); one group with only Canna indica (V5, Ci), and a group with synthetic fertilizers (NPK). The results showed the remarkable impacts of Ci-vermicompost and different ratios of organic fertilizer on soil fertility and plant height (28.8%) as major outcomes. In addition, vermicompost substantially increased soil total nitrogen (60.5%), soil organic matter (60.9%) including dissolved organic carbon (52.2%), and shoot biomass (V4, three-fold increase) compared with NPK and CK. Overall, the findings of this study suggest that vermicomposting combined with wetland plants is a feasible method for organic amendments and offers an innovative approach for recycling ecological waste to produce nutrient-rich organic fertilizers, reduce environmental damage, and improve crop production.


Assuntos
Solo , Zingiberales , Agricultura/métodos , Animais , China , Fertilizantes , Esterco , Nitrogênio , Plantas , Solo/química , Suínos , Zea mays
2.
Chemosphere ; 287(Pt 3): 132268, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34555585

RESUMO

Dissolved salts, colloidal particles, and active microorganisms in brackish surface water distribution systems (BSWD) cause multiple fouling, poses potential threat to the environmental pollution, and raising technical and economic issues as well. So far, the co-occurrence and interactions of multiple fouling remains largely unknown. Multiple fouling behaviors were assessed in agriculture BSWD under different nitrogen (N) fertilizers. X-ray diffraction, Rietveld refinement analysis, 16S rRNA, and microbial network analysis were conducted to determine the fouling characteristics. Statistical analysis was applied to reveal the relative contributions and interaction of multiple fouling. Our results demonstrated, multiple fouling of precipitates, particulates and biofoulings were co-occurred. Fouling growth was largely attributed to the strong interactions of different fouling. The binary interactions of precipitates - particulates contributed 51.1%, and ternary interactions of precipitates - particulates - biofouling contributed 25.4% to explain the decline of system performance, while the contribution of each single type fouling was minimal. Thereby indicating the significant role of calcium silica, biomineralization and bio-silicates in fouling. The lower acid N fertilizer broken the interaction of multiple fouling by increasing the precipitate crystal parameters and repulsive forces amongst particulates, as well as destroyed microbial interactions in biofouling. Overall, this study open frontier for multiple fouling in-depth profiling and antifouling guidance for effective utilization of BSWD.


Assuntos
Incrustação Biológica , Membranas Artificiais , RNA Ribossômico 16S , Águas Salinas , Água
3.
Sci Total Environ ; 782: 146833, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33845369

RESUMO

The destabilization of rock glaciers and permafrost variations is of great importance to the safety of the population and infrastructure in the Karakoram region because of their effects on land stability and river obstructions. In this study, we compiled the first complete rock glacier inventory for the Hunza Basin, western Karakoram, of 616 rock glaciers with an area of 194 km2 between 2800 and 5700 m a.s.l. We categorized the rock glaciers as intact or relict, and their distributions and destabilization were further analyzed and used along with in situ climate and elevation dataset to model the permafrost probability distribution. The modeled areas where the permafrost zonation index (PZI) is 0.5-1.00 indicate that permafrost occurs over 85% of the catchment area and lies above 3525 m a.s.l., which closely matches the zero-degree isotherm of 3800 m a.s.l. Based on the sensitivity analysis of the independent variables, elevation is the most sensitive variable, followed by net radiation, for predicting the probabilities of the presence and absence of permafrost. The model distributions are quite precise, with median posterior areas under the curve of 0.98 and 0.96 for model training and testing, respectively. We analyzed the rock glacier destabilization for 68 rock glaciers that interacted with river channels, of which 50 blocked or diverted river channels. Destabilized rock glaciers can be closely linked to the 0 °C isotherm between 3400 and 4600 m a.s.l. The significant damage caused by periodic floods from the subsequent blockage of river channels by landslides can be attributed to variations in permafrost. Which demolished infrastructure, including a hydropower plant, suspension bridge and water supply system in Hassan-abad catchment. Quantification of rock glacier dynamics and permafrost in the region can further improve policies related to the reduction in disaster risk and mitigation of associated hazards.

4.
Sci Total Environ ; 760: 143349, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33168255

RESUMO

Landslides induced by strong earthquakes often destroy large amounts of landscape vegetation which can trigger significant changes in runoff potential and flood flow. Little is known about hydrological behaviours imposed by co-seismic landslides and their post-earthquake evolution. Therefore, we collected time-series datasets (2007-2018) of underlying surface conditions (USC) changes including landslide expansion and recovery in a watershed affected by the Wenchuan earthquake to further quantify how the large physical disturbance affected the flood hydrological behaviours. The hydrological model HEC-HMS was calibrated and validated to predict the historical hydrological behaviours based on 5 min time-series data in rainfalls and streamflow (2018-2019), showing a good model performance with a mean Nash-Sutcliffe efficiency of 0.76. It was found that, shortly after the earthquake, the sharp expansion with 11% of landslide areas elevated the magnitudes of runoff potential, peak discharge, and runoff volume by >10%, and the peak to time for the high-magnitude flood was advanced by 25 min compared to the pre-earthquake levels. The tipping point along the hydrological disturbance-recovery trajectory was detected within 2011 with higher flood peaks and volumes, and the periods of 2011-2013 (i.e. 3-5 years post-earthquake) were deemed to be a rapid recovery period, revealing an unstable hydrological function. These findings are significant for clearly understanding the magnitude and timing, as well as greater risks of post-earthquake catastrophic flooding in earthquake-stricken regions. Additionally, the post-earthquake accompanied rainstorm-induced geohazards, which limited the recovery of landscape vegetation, triggering an undulant but clear recovery process (1-7 years post-earthquake) of hydrological behaviours. These findings promoted our understanding of the spatiotemporal evolution of hydrological behaviours triggered by the earthquake, and further contribute to the development of adaptation and mitigation strategies for the unpredictable flash floods triggered by future abrupt natural hazards in earthquake-affected regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA