Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(808): eadg1553, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874885

RESUMO

Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. Here, we investigated the cellular mechanisms underlying lung IR-induced activation of endothelial TRPV4 channels, which play a central role in lung edema and dysfunction after IR. In a left lung hilar-ligation model of IRI in mice, we found that lung IRI increased the efflux of ATP through pannexin 1 (Panx1) channels at the endothelial cell (EC) membrane. Elevated extracellular ATP activated Ca2+ influx through endothelial TRPV4 channels downstream of purinergic P2Y2 receptor (P2Y2R) signaling. P2Y2R-dependent activation of TRPV4 channels was also observed in human and mouse pulmonary microvascular endothelium in ex vivo and in vitro models of IR. Endothelium-specific deletion of P2Y2R, TRPV4, or Panx1 in mice substantially prevented lung IRI-induced activation of endothelial TRPV4 channels and lung edema, inflammation, and dysfunction. These results identify endothelial P2Y2R as a mediator of the pathological sequelae of IRI in the lung and show that disruption of the endothelial Panx1-P2Y2R-TRPV4 signaling pathway could be a promising therapeutic strategy for preventing lung IRI after transplantation.


Assuntos
Traumatismo por Reperfusão , Canais de Cátion TRPV , Humanos , Animais , Camundongos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Pulmão/metabolismo , Traumatismo por Reperfusão/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Trifosfato de Adenosina/metabolismo , Edema/metabolismo , Edema/patologia , Proteínas do Tecido Nervoso/metabolismo , Conexinas/genética , Conexinas/metabolismo
2.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37397979

RESUMO

Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. We recently reported that endothelial cell (EC) TRPV4 channels play a central role in lung edema and dysfunction after IR. However, the cellular mechanisms for lung IR-induced activation of endothelial TRPV4 channels are unknown. In a left-lung hilar ligation model of IRI in mice, we found that lung IR increases the efflux of extracellular ATP (eATP) through pannexin 1 (Panx1) channels at the EC membrane. Elevated eATP activated elementary Ca2+ influx signals through endothelial TRPV4 channels through purinergic P2Y2 receptor (P2Y2R) signaling. P2Y2R-dependent activation of TRPV4 channels was also observed in human and mouse pulmonary microvascular endothelium in ex vivo and in vitro surrogate models of lung IR. Endothelium-specific deletion of P2Y2R, TRPV4, and Panx1 in mice had substantial protective effects against lung IR-induced activation of endothelial TRPV4 channels, lung edema, inflammation, and dysfunction. These results identify endothelial P2Y2R as a novel mediator of lung edema, inflammation, and dysfunction after IR, and show that disruption of endothelial Panx1-P2Y2R-TRPV4 signaling pathway could represent a promising therapeutic strategy for preventing lung IRI after transplantation.

3.
Pulm Circ ; 13(1): e12186, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36686408

RESUMO

Endothelial cells (ECs) from small pulmonary arteries (PAs) release nitric oxide (NO) and prostacyclin, which lower pulmonary arterial pressure (PAP). In pulmonary hypertension (PH), the levels of endothelium-derived NO and prostacyclin are reduced, contributing to elevated PAP. Small-and intermediate-conductance Ca2+-activated K+ channels (IK and SK)-additional crucial endothelial mediators of vasodilation-are also present in small PAs, but their function has not been investigated in PH. We hypothesized that endothelial IK and SK channels can be targeted to lower PAP in PH. Whole-cell patch-clamp experiments showed functional IK and SK channels in ECs, but not smooth muscle cells, from small PAs. Using a SU5416 plus chronic hypoxia (Su + CH) mouse model of PH, we found that currents through EC IK and SK channels were unchanged compared with those from normal mice. Moreover, IK/SK channel-mediated dilation of small PAs was preserved in Su + CH mice. Consistent with previous reports, endothelial NO levels and NO-mediated dilation were reduced in small PAs from Su + CH mice. Notably, acute treatment with IK/SK channel activators decreased PAP in Su + CH mice but not in normal mice. Further, chronic activation of IK/SK channels decreased PA remodeling and right ventricular hypertrophy, which are pathological hallmarks of PH, in Su + CH mice. Collectively, our data provide the first evidence that, unlike endothelial NO release, IK/SK channel activity is not altered in PH. Our results also demonstrate proof of principle that IK/SK channel activation can be used as a strategy for lowering PAP in PH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...