Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623753

RESUMO

Carbon capture and storage is one of the potential options for reducing CO2 emissions from coal-fired power plants while preserving their operation. Mathematical modeling was carried out for a one-stage membrane process of carbon dioxide capture from the flue gases of coal-fired power plants using commercial gas separation membranes. Our calculations show that highly CO2-permeable membranes provide similar characteristics with respect to the separation process (e.g., a specific area of membrane and a specific level of electrical energy consumption) despite the significant variation in CO2/N2 and H2O/CO2 selectivity. Regarding the development of processes for the recovery of CO2 from flue gas using membrane technology, ensuring high CO2 permeance of a membrane is more important than ensuring high CO2/N2 selectivity. The presence of water vapor in flue gas provides a higher driving force of CO2 transfer through the membrane due to the dilution of CO2 in the permeate. A cross-flow membrane module operation provides better recovery of CO2 in the presence of water vapor than a counter-current operation.

2.
Membranes (Basel) ; 13(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367748

RESUMO

Membrane gas-liquid contactors have great potential to meet the challenges of amine CO2 capture. In this case, the most effective approach is the use of composite membranes. However, to obtain these, it is necessary to take into account the chemical and morphological resistance of membrane supports to long-term exposure to amine absorbents and their oxidative degradation products. In this work, we studied the chemical and morphological stability of a number of commercial porous polymeric membranes exposed to various types of alkanolamines with the addition of heat-stable salt anions as a model of real industrial CO2 amine solvents. The results of the physicochemical analysis of the chemical and morphological stability of porous polymer membranes after exposure to alkanolamines, their oxidative degradation products, and oxygen scavengers were presented. According to the results of studies by FTIR spectroscopy and AFM, a significant destruction of porous membranes based on polypropylene (PP), polyvinylidenefluoride (PVDF), polyethersulfone (PES) and polyamide (nylon, PA) was revealed. At the same time, the polytetrafluoroethylene (PTFE) membranes had relatively high stability. On the basis of these results, composite membranes with porous supports that are stable in amine solvents can be successfully obtained to create liquid-liquid and gas-liquid membrane contactors for membrane deoxygenation.

3.
Membranes (Basel) ; 13(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37233552

RESUMO

The thermal-oxidative degradation of aqueous solutions of carbonized monoethanolamine (MEA, 30% wt., 0.25 mol MEA/mol CO2) was studied for 336 h at 120 °C. Based on the change in the color of the solution and the formation of a precipitate, the occurrence of thermal-oxidative degradation of the MEA solution with the formation of destruction products, including insoluble ones, was confirmed. The electrokinetic activity of the resulting degradation products, including insoluble ones, was studied during the electrodialysis purification of an aged MEA solution. To understand the influence of degradation products on the ion-exchange membrane properties, a package of samples of MK-40 and MA-41 ion-exchange membranes was exposed to a degraded MEA solution for 6 months. A comparison of the efficiency of the electrodialysis treatment of a model absorption solution of MEA before and after long-time contact with degraded MEA showed that the depth of desalination was reduced by 34%, while the magnitude of the current in the ED apparatus was reduced by 25%. For the first time, the regeneration of ion-exchange membranes from MEA degradation products was carried out, which made it possible to restore the depth of desalting in the ED process by 90%.

4.
Membranes (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837733

RESUMO

Amine CO2 solvents undergo oxidative degradation with the formation of heat stable salts (HSS). These HSS reduce the sorption capacity of amines and lead to intense corrosion of the equipment. In our work, we propose a membrane-supported liquid-liquid extraction of the HSS from alkanolamines. For this purpose, a hollow fiber membrane contactor was used for the first time. A lab-scale extraction system on the basis of a hollow-fiber liquid-liquid membrane contactor with hollow fiber ultrafiltration polyvinylidenefluoride and polysulfone membranes has been studied. The extraction of the HSS-ions from a 30 wt.% solution of monoethanolamine was carried out using a 0.25-1 M solution of OH-modified methyltrioctylammonium chloride in 1-octanol as an extractant. It has been shown that >90% of HSS ions can be extracted from the alkanolamine solvent within 8 h after extraction. The results obtained confirm the possibility of using membrane extraction with a liquid-liquid membrane contactor for the reclaiming of amine CO2 solvents to increase the general efficiency of carbon dioxide capture.

5.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772023

RESUMO

Membrane development for specific separation tasks is a current and important topic. In this work, the influence of OH-groups introduced in polydecylmethylsiloxane (PDecMS) was shown on the separation of CO2 from air and aldehydes from hydroformylation reaction media. OH-groups were introduced to PDecMS during hydrosilylation reaction by adding 1-decene with undecenol-1 to polymethylhydrosiloxane, and further cross-linking. Flat sheet composite membranes were developed based on these polymers. For obtained membranes, transport and separation properties were studied for individual gases (CO2, N2, O2) and liquids (1-hexene, 1-heptene, 1-octene, 1-nonene, heptanal and decanal). Sorption measurements were carried out for an explanation of difference in transport properties. The general trend was a decrease in membrane permeability with the introduction of OH groups. The presence of OH groups in the siloxane led to a significant increase in the selectivity of permeability with respect to acidic components. For example, on comparing PDecMS and OH-PDecMS (~7% OH-groups to decyl), it was shown that selectivity heptanal/1-hexene increased eight times.

6.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615597

RESUMO

In this work, we studied aqueous solutions of monoethanolamine (MEA), which are widely used to remove CO2 from flue and oil gases. This study combined experimental and theoretical methods of vibrational spectroscopy, using high-temperature infrared spectroscopy, quantum-chemical calculations of theoretical vibrational spectra, and structural electronic and energy characteristics of model structures. MEA has a propensity to form associations between various compositions and structures with water molecules, as well as those composed solely of water molecules. The structural and energy characteristics of such associates were analyzed in terms of their ability to interact and retain carbon dioxide. The influence of elevated temperatures and concentration of aqueous MEA solution on change in the structure of associates has also been investigated. An analysis of theoretical and experimental vibrational spectra allowed us to examine the IR spectra of MEA solutions, and identify the bands responsible for the formation of associates that would sorb CO2 well, but would delay its desorption from the solution.

7.
Membranes (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422152

RESUMO

In this work, perspective polymeric materials were developed for membrane contactor applications, e.g., for the dissolved oxygen removal from amine CO2 capture solvents. Several polymeric blends based on poly[1-trimethylsilyl-1-propyne] (PTMSP) and poly[vinyltrimethylsilane] (PVTMS) were studied. The gas and water vapor sorption and permeability coefficients for the PTMSP/PVTMS blend membranes at different PVTMS contents (0-100%) were obtained under temperatures of 30 and 60 °C for the first time. As the PVTMS content increases, the O2 and CO2 permeabilities decrease by 160 and 195 times at 30 °C, respectively. The fractional accessible volume of the polymer blends decreases accordingly. The transport of the CO2 capture solvent vapors through the PTMSP/PVTMS blend membranes were determined in thermo-pervaporation (TPV) mode using aqueous monoethanolamine (30%), N-methyldiethanolamine (40%), and 2-amino-2-methyl-1-propanol (30%) solutions as model amine solvents at 60 °C. The membranes demonstrated high pervaporation separation factors with respect to water, resulting in low amine losses. A joint analysis of the gas permeabilities and aqueous alkanolamine TPV data allowed us to conclude that the polymer blend composition of PTMSP/PVTMS 70/30 provides an optimal combination of a sufficiently high oxygen permeability and the pervaporation separation factor at a temperature of 60 °C.

8.
Membranes (Basel) ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363645

RESUMO

Membranes based on natural polymers, in particular alginate, are of great interest for various separation tasks. In particular, the possibility of introducing silver ions during the crosslinking of sodium alginate makes it possible to obtain a membrane with an active olefin transporter. In this work, the creation of a hollow fiber composite membrane with a selective layer of silver alginate is proposed for the first time. The approach to obtaining silver alginate is presented in detail, and its sorption and transport properties are also studied. It is worth noting the increased selectivity of the material for the ethylene/ethane mixture (more than 100). A technique for obtaining a hollow fiber membrane from silver alginate has been developed, and its separating characteristics have been determined. It is shown that in thin layers, silver alginate retains high values of selectivity for the ethylene/ethane gas pair. The obtained gas transport properties demonstrate the high potential of using membranes based on silver alginate for the separation of an olefin/paraffin mixture.

9.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458375

RESUMO

The application of gas-liquid membrane contactors for ethane-ethylene separation seems to offer a good alternative to conventional energy-intensive processes. This work aims to develop new hydrophobic composite membranes with active ethylene carriers and to demonstrate their potential for ethylene/ethane separation in gas-liquid membrane contactors. For the first time, hybrid membrane materials based on polyoctylmethylsiloxane (POMS) and silver tetrafluoroborate, with a Si:Ag ratio of 10:0.11 and 10:2.2, have been obtained. This technique allowed us to obtain POMS-based membranes with silver nanoparticles (8 nm), which are dispersed in the polymer matrix. The dispersion of silver in the POMS matrix is confirmed by the data IR-spectroscopy, wide-angle X-ray diffraction, and X-ray fluorescence analyses. These membranes combine the hydrophobicity of POMS and the selectivity of silver ions toward ethylene. It was shown that ethylene sorption at 600 mbar rises from 0.89 cm3(STP)/g to 3.212 cm3(STP)/g with an increase of Ag content in POMS from 0 to 9 wt%. Moreover, the membrane acquires an increased sorption affinity for ethylene. The ethylene/ethane sorption selectivity of POMS is 0.64; for the membrane with 9 wt% silver nanoparticles, the ethylene/ethane sorption selectivity was 2.46. Based on the hybrid material, POMS-Ag, composite membranes were developed on a polyvinylidene fluoride (PVDF) porous support, with a selective layer thickness of 5-10 µm. The transport properties of the membranes were studied by separating a binary mixture of ethylene/ethane at 20/80% vol. It has been shown that the addition of silver nanoparticles to the POMS matrix leads to a decrease in the ethylene permeability, but ethylene/ethane selectivity increases from 0.9 (POMS) to 1.3 (9 wt% Ag). It was noted that when the POMS-Ag membrane is exposed to the gas mixture flow for 3 h, the selectivity increases to 1.3 (0.5 wt% Ag) and 2.3 (9 wt% Ag) due to an increase in ethylene permeability. Testing of the obtained membranes in a gas-liquid contactor showed that the introduction of silver into the POMS matrix makes it possible to intensify the process of ethylene mass transfer by more than 1.5 times.

10.
Membranes (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36676828

RESUMO

This work was focused on the mitigation of physical aging in thin-film composite (TFC) membranes (selective layer ~1 µm) based on polymer intrinsic microporosity (PTMSP) by the introduction of both soft, branched polyethyleneimine (PEI), and rigid, porous aromatic framework PAF-11, polymer additives. Self-standing mixed-matrix membranes of thicknesses in the range of 20-30 µm were also prepared with the same polymer and fillers. Based on 450 days of monitoring, it was observed that the neat PTMSP composite membrane underwent a severe decline of its gas transport properties, and the resultant CO2 permeance was 14% (5.2 m3 (STP)/(m2·h·bar)) from the initial value measured for the freshly cast sample (75 m3 (STP)/(m2·h·bar)). The introduction of branched polyethyleneimine followed by its cross-linking allowed to us to improve the TFC performance maintaining CO2 permeance at the level of 30% comparing with day zero. However, the best results were achieved by the combination of porous, rigid and soft, branched polymeric additives that enabled us to preserve the transport characteristics of TFC membrane as 43% (47 m3 (STP)/(m2·h·bar) after 450 days) from its initial values (110 m3 (STP)/(m2·h·bar)). Experimental data were fitted using the Kohlrausch-Williams-Watts function, and the limiting (equilibrium) values of the CO2 and N2 permeances of the TFC membranes were estimated. The limit value of CO2 permeance for neat PTMSP TFC membrane was found to be 5.2 m3 (STP)/(m2·h·bar), while the value of 34 m3(STP)/(m2·h·bar) or 12,600 GPU was achieved for TFC membrane containing 4 wt% cross-linked PEI, and 30 wt% PAF-11. Based on the N2 adsorption isotherms data, it was calculated that the reduction of the free volume was 1.5-3 times higher in neat PTMSP compared to the modified one. Bearing in mind the pronounced mitigation of physical aging by the introduction of both types of fillers, the developed high-performance membranes have great potential as support for the coating of an ultrathin, selective layer for gas separation.

11.
Membranes (Basel) ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940449

RESUMO

A promising solution for the implementation of extraction processes is liquid-liquid membrane contactors. The transfer of the target component from one immiscible liquid to another is carried out inside membrane pores. For the first time, highly asymmetric track-etched membranes made of polyethylene terephthalate (PET) of the same thickness but with different pore diameters (12.5-19 nm on one side and hundreds of nanometers on the other side) were studied in the liquid-liquid membrane contactor. For analysis of the liquid-liquid interface stability, two systems widely diverging in the interfacial tension value were used: water-pentanol and water-hexadecane. The interface stability was investigated depending on the following process parameters: the porous structure, the location of the asymmetric membrane in the contactor, the velocities of liquids, and the pressure drop between them. It was shown that the stability of the interface increases with decreasing pore size. Furthermore, it is preferable to supply the aqueous phase from the side of the asymmetric membrane with the larger pore size. The asymmetry of the porous structure of the membrane makes it possible to increase the range of pressure drop values between the phases by at least two times (from 5 to 10 kPa), which does not lead to mutual dispersion of the liquids. The liquid-liquid contactor based on the asymmetric track-etched membranes allows for the extraction of impurities from the organic phase into the aqueous phase by using a 1% solution of acetone in hexadecane as an example.

12.
Membranes (Basel) ; 10(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327393

RESUMO

The mitigation of the physical aging of thin-film composite (TFC) poly[1-trimethylsilyl-1-propyne] (PTMSP) membranes was studied via the simultaneous application of a polymer-selective layer crosslinking and mixed-matrix membrane approach. For the first time, a recently developed highly porous activated carbon material (infrared (IR) pyrolyzed poly[acrylonitrile] (PAN) or IR-PAN-a) was investigated as an additive to a PTMSP-selective layer for the reduction of aging in TFC membranes. The total electric energy spent on the IR irradiation treatment of IR-PAN-a particles was twice lower than conventional heating. The flat-sheet porous microfiltration membrane MFFK-1 was used as a support, and the crosslinked PTMSP/PEI loaded with a porous filler was applied as a selective layer (0.8-1.8 µm thick) to the TFC membranes. The initial IR-PAN-a sample was additionally milled to obtain a milled IR-PAN-aM sample with a monomodal particle size distribution of 500-800 nm. It was shown that IR-PAN-a, as a filler material with a high surface area and pore volume (2450 m2/g and 1.06 cm3/g, respectively) and a well-developed sponge-like structure, leads to the increase of the N2, O2, and CO2 permeance of PTMSP-based hybrid membrane material and the decrease of the aging of PTMSP. The simultaneous effect of crosslinking and the addition of a highly porous filler essentially improved the aging behavior of PTMSP-based TFC membranes. The monomodal and narrow particle size distribution of highly porous activated IR-pyrolyzed PAN is a key factor for the production of TFC membranes with reduced aging. The highest stability was achieved by the addition of a milled IR-PAN-aM sample (10 wt%). TFC membrane permeance was 6300 GPU (30% of initial permeance) after 11,000 h of aging at ambient laboratory conditions.

13.
Membranes (Basel) ; 9(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766157

RESUMO

Heat stable salts (HSS) formed and continuously accumulated in the amine-based solvents due to solvent degradation and impurities in the feed gas can dramatically change the efficiency of the amine scrubbing process. HSS can be removed by using different methods including membrane separation such as electrodialysis (ED). In this work, we studied the effect of CO2 loading of the lean 30 wt % monoethanolamine (MEA) solution on the efficiency of HSS removal and MEA loss. In the model MEA solution containing HSS on the level of 48 meq/L, the carbon dioxide concentration was varied from 0.2 down to 0 mole (CO2)/mole (MEA). The reclaiming of model MEA solution was carried out by lab-scale two-stage ED unit when the concentrate stream after the first stage was additionally treated using ED (second stage) that allowed reducing MEA loss. It was shown that the decrease of carbon dioxide content from 0.2 down to 0 mole (CO2)/mole (MEA) resulted in a substantial reduction of both parameters-the MEA loss and the specific power consumption with respect to extracted HSS (from 140 down 37 kJ per 1 g of recovered HSS anions). This can be explained by the drop in the total concentration of ions formed by the interaction of MEA solution with carbon dioxide. However, the change of CO2 loading is associated with additional power consumption towards further solvent regeneration in the column. Based on the preliminary estimations of power consumption required for additional CO2 stripping with the respect to the power consumption of ED stage, it seems that lean solvent CO2 loading of 0.1 mole/mole provides an optimum for the power input at 25.9 MJ/kg(solvent).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...