Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 306(4): 831-843, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35466553

RESUMO

Cat is a prominent model for investigating neural networks of the lumbosacral spinal cord that control locomotor and visceral activity. We previously proposed an integral function, establishing the topographical relationship between the spinal cord segments and vertebrae in adult animals. Here, we investigated the dynamic of this topographical relationship through early and middle periods of development in kittens. We calculated the length of each vertebra relative to the total length of the region from 13th thoracic (T) to the 7th lumbar (L) vertebrae (V) as well as the length of each segment relative to the total region from T13 to the three-dimensional sacral (S) segment. As in our previous work, the length and position of VL2 were used to establish relationships between the characteristics of the segments and vertebrae. Cubic regression reliably approximates the lengths of segments relative to VL2 length. As the cat aged, the relative length of VT13 and VL1 decreased while the relative length of VL5 increased. The relative length of the T13 and L3 segments increased while the relative length of the S1-S2 segments decreased. The T13-L2 segments are descended monotonically relative to the VL1-VL2 border. The L3-S1 segments are also descended, though with more complex dynamics. The positions of the S2-S3 segments remained unchanged. To conclude, different spinal segments displayed different developmental dynamics. The revealed relationship between vertebrae and lumbosacral spinal segments may be helpful for clearly defining stimulation regions to invoke particular functions, both in experimental studies on the spinal cord and clinical treatment.


Assuntos
Sacro , Medula Espinal , Animais , Feminino , Gatos , Vértebras Lombares
2.
Anat Rec (Hoboken) ; 302(9): 1628-1637, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30548810

RESUMO

Detailed knowledge of the topographic organization and precise access to the spinal cord segments is crucial for the neurosurgical manipulations as well as in vivo neurophysiological investigations of the spinal networks involved in sensorimotor and visceral functions. Because of high individual variability, accurate identification of particular portion of the lumbosacral enlargement is normally possible only during postmortem dissection. Yet, it is often necessary to determine the precise location of spinal segments prior to in vivo investigation, targeting spinal cord manipulations, neurointerface implantations, and neuronal activity recordings. To solve this problem, we have developed an algorithm to predict spinal segments locations based on their relation to vertebral reference points. The lengths and relative positions of the spinal cord segments (T13-S3) and the vertebrae (VT13-VL7) were measured in 17 adult cats. On the basis of these measurements, we elaborated the estimation procedure: the cubic regression of the ratio of the segment's length to the lengths of the VL2 vertebra was used for the determination of segment's length; and the quadratic regression of the ratio of their positions in relation to the VL2 rostral part was used to determine the position of the segments. The coefficients of these regressions were calculated at the training sample (nine cats) and were then confirmed at the testing sample (eight cats). Although the quality of the prediction is decreased in the caudal direction, we found high correlations between the regressions and real data. The proposed algorithm can be further translated to other species including human. Anat Rec, 302:1628-1637, 2019. © 2018 American Association for Anatomy.


Assuntos
Algoritmos , Medula Espinal/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Gatos , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...