Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Phys Rev Lett ; 132(7): 072501, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427880

RESUMO

Five previously unknown isotopes (^{182,183}Tm, ^{186,187}Yb, ^{190}Lu) were produced, separated, and identified for the first time at the Facility for Rare Isotope Beams (FRIB) using the Advanced Rare Isotope Separator (ARIS). The new isotopes were formed through the interaction of a ^{198}Pt beam with a carbon target at an energy of 186 MeV/u and with a primary beam power of 1.5 kW. Event-by-event particle identification of A, Z, and q for the reaction products was performed by combining measurements of the energy loss, time of flight, magnetic rigidity Bρ, and total kinetic energy. The ARIS separator has a novel two-stage design with high resolving power to strongly suppress contaminant beams. This successful new isotope search was performed less than one year after FRIB operations began and demonstrates the discovery potential of the facility which will ultimately provide 400 kW of primary beam power.

2.
Phys Rev Lett ; 130(23): 232301, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354417

RESUMO

For the first time, the (d,^{2}He) reaction was successfully used in inverse kinematics to extract the Gamow-Teller transition strength in the ß^{+} direction from an unstable nucleus. The new technique was made possible by the use of an active-target time-projection chamber and a magnetic spectrometer, and opens a path to addressing a range of scientific challenges, including in astrophysics and neutrino physics. In this Letter, the nucleus studied was ^{14}O, and the Gamow-Teller transition strength to ^{14}N was extracted up to an excitation energy of 22 MeV. The data were compared to shell-model and state-of-the-art coupled-cluster calculations. Shell-model calculations reproduce the measured Gamow-Teller strength distribution up to about 15 MeV reasonably well, after the application of a phenomenological quenching factor. In a significant step forward to better understand this quenching, the coupled-cluster calculation reproduces the full strength distribution well without such quenching, owing to the large model space, the inclusion of strong correlations, and the coupling of the weak interaction to two nucleons through two-body currents.


Assuntos
Núcleo Celular , Física , Fenômenos Biomecânicos
3.
Phys Rev Lett ; 129(24): 242501, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563248

RESUMO

A novel pathway for the formation of multiparticle-multihole excited states in rare isotopes is reported from highly energy- and momentum-dissipative inelastic-scattering events measured in reactions of an intermediate-energy beam of ^{38}Ca on a Be target. The negative-parity, complex-structure final states in ^{38}Ca are observed following the in-beam γ-ray spectroscopy of events in the ^{9}Be(^{38}Ca,^{38}Ca+γ)X reaction in which the scattered projectile loses longitudinal momentum of order Δp_{||}=700 MeV/c. The characteristics of the observed final states are discussed and found to be consistent with the formation of excited states involving the rearrangement of multiple nucleons in a single, highly energetic projectile-target collision. Unlike the far-less-dissipative, surface-grazing reactions usually exploited for the in-beam γ-ray spectroscopy of rare isotopes, these more energetic collisions appear to offer a practical pathway to nuclear-structure studies of more complex multiparticle configurations in rare isotopes-final states conventionally thought to be out of reach with high-luminosity fast-beam-induced reactions.

4.
Rev Sci Instrum ; 93(12): 123305, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586929

RESUMO

We present the development of a novel heavy-ion particle-identification (PID) device based on an energy-loss measurement to be implemented in the focal plane of the S800 spectrograph of the Facility for Rare Isotope Beams (FRIB). The new instrument consists of a multi-segmented optical detector [energy-loss optical scintillation system (ELOSS)] that is filled with xenon at pressures ranging from 400 to 800 Torr. The gas volume is surrounded by arrays of photomultiplier tubes and placed along the direction of the beam for recording the prompt scintillation light. The number of detected photons, which is proportional to the energy deposited by the beam particle along its track in the detector volume, allows one to identify the corresponding atomic number (Z). The ELOSS technology is expected to provide high-resolution ΔE measurements (≤0.6% σ) at a high counting rate (>50 kHz). In addition, it has the capability of providing timing information with around 150 ps resolution (σ) compared to the lack of useable timing information of the conventional ionization chamber relying on drifting charges. The development of fast, accurate ΔE measurement techniques for present and future nuclear science facilities will have a high impact on the design and implementation of rare-isotope beam experiments at FRIB and their scientific outcome. As such, ELOSS also represents a prototype for the development of PID detector systems of other planned and future spectrometers, such as the high rigidity spectrometer at FRIB.

5.
Phys Rev Lett ; 129(1): 012501, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841541

RESUMO

A narrow near-threshold proton-emitting resonance (E_{x}=11.4 MeV, J^{π}=1/2^{+}, and Γ_{p}=4.4 keV) was directly observed in ^{11}B via proton resonance scattering. This resonance was previously inferred in the ß-delayed proton emission of the neutron halo nucleus ^{11}Be. The good agreement between both experimental results serves as a ground to confirm the existence of such exotic decay and the particular behavior of weakly bound nuclei coupled to the continuum. R-matrix analysis shows a sizable partial decay width for both, proton and α (Γ_{α}=11 keV) emission channels.

6.
Rev Sci Instrum ; 93(1): 013306, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104937

RESUMO

A challenge preventing successful inverse kinematics measurements with heavy nuclei that are not fully stripped is identifying and tagging the beam particles. For this purpose, the HEavy ISotope Tagger (HEIST) has been developed. HEIST utilizes two micro-channel plate timing detectors to measure the time-of-flight, a multi-sampling ion chamber to measure energy loss, and a high-purity germanium detector to identify isomer decays and calibrate the isotope identification system. HEIST has successfully identified 198Pb and other nearby nuclei at energies of about 75 MeV/A. In the experiment discussed, a typical cut containing 89% of all 198Pb80+ in the beam had a purity of 86%. We examine the issues of charge state contamination. The observed charge state populations of these ions are presented and, using an adjusted beam energy, are well described by the charge state model GLOBAL.

8.
Phys Rev Lett ; 126(15): 152701, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929230

RESUMO

The discrepancy between observations from γ-ray astronomy of the ^{60}Fe/^{26}Al γ-ray flux ratio and recent calculations is an unresolved puzzle in nuclear astrophysics. The stellar ß-decay rate of ^{59}Fe is one of the major nuclear uncertainties impeding us from a precise prediction. The important Gamow-Teller strengths from the low-lying states in ^{59}Fe to the ^{59}Co ground state are measured for the first time using the exclusive measurement of the ^{59}Co(t,^{3}He+γ)^{59}Fe charge-exchange reaction. The new stellar decay rate of ^{59}Fe is a factor of 3.5±1.1 larger than the currently adopted rate at T=1.2 GK. Stellar evolution calculations show that the ^{60}Fe production yield of an 18 solar mass star is decreased significantly by 40% when using the new rate. Our result eliminates one of the major nuclear uncertainties in the predicted yield of ^{60}Fe and alleviates the existing discrepancy of the ^{60}Fe/^{26}Al ratio.

9.
Prog Urol ; 31(6): 348-356, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33455824

RESUMO

BACKGROUND: We present the long-term results and complications of the DETOUR® prosthesis, a permanent subcutaneous pyelovesical bypass for the treatment of ureteral obstruction. PATIENTS AND METHODS: Between 2006 et 2018, 34 prosthesis were implanted in 28 patients (mean age 65,8 years) with ureteral obstruction of malignant or benign etiologies. The prosthesis, composed to an inner tube of silicone and an outer tube of expanded polytetrafluoroethylene, is placed subcutaneously between the kidney and the bladder. We are performed infrared spectrophotometry and scanning electron microscopy on two removed prostheses to explore the prosthetic encrustation. RESULTS: The average follow-up was 25,8 months (Maximum: 64 months). Stent revision was required for early bladder fistula in three patients. The major long-term complications were infection (46%), obstruction (3 patients) and bladder fistula (7 patients). The most frequently infection are non-severe, but two patients died from septic shock after fungic colonization of the prosthesis. The infrared spectrophotometry and scanning electron microscopy analysis showed that the obstruction was favored by urinary infection and an alkaline medium. The functional prosthesis rate at 1,2 and 3 years was 94%, 71% and 62%, respectively. CONCLUSION: The DETOUR® subcutaneous extra-anatomical urinary bypass is an effective and minimally invasive alternative to permanent percutaneous nephrostomy, for both malignant and benign ureteral obstructions in selected patients. LEVEL OF EVIDENCE: 3.


Assuntos
Pelve Renal/cirurgia , Complicações Pós-Operatórias/epidemiologia , Obstrução Ureteral/cirurgia , Bexiga Urinária/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Morbidade , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Procedimentos Cirúrgicos Urológicos/métodos , Adulto Jovem
10.
Phys Rev Lett ; 125(23): 232501, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337204

RESUMO

The neutron-rich nuclei in the N=28 island of inversion have attracted considerable experimental and theoretical attention, providing great insight into the evolution of shell structure and nuclear shape in exotic nuclei. In this work, for the first time, quadrupole collectivity is assessed simultaneously on top of the 3/2^{-} ground state and the 7/2^{-} shape-coexisting isomer of ^{43}S, putting the unique interpretation of shape and configuration coexistence at N=27 and 28 in the sulfur isotopic chain to the test. From an analysis of the electromagnetic transition strengths and quadrupole moments predicted within the shell model, it is shown that the onset of shape coexistence and the emergence of a simple collective structure appear suddenly in ^{43}S with no indication of such patterns in the N=27 isotone ^{45}Ar.

11.
Phys Rev Lett ; 125(20): 202701, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258618

RESUMO

Type-I x-ray bursts can reveal the properties of an accreting neutron star system when compared with astrophysics model calculations. However, model results are sensitive to a handful of uncertain nuclear reaction rates, such as ^{22}Mg(α,p). We report the first direct measurement of ^{22}Mg(α,p), performed with the Active Target Time Projection Chamber. The corresponding astrophysical reaction rate is orders of magnitude larger than determined from a previous indirect measurement in a broad temperature range. Our new measurement suggests a less-compact neutron star in the source GS1826-24.

13.
Phys Rev Lett ; 124(15): 152501, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357059

RESUMO

The lifetimes of the first excited 2^{+} states in the N=Z nuclei ^{80}Zr, ^{78}Y, and ^{76}Sr have been measured using the γ-ray line shape method following population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. The extracted reduced electromagnetic transition strengths yield new information on where the collectivity is maximized and provide evidence for a significant, and as yet unexplained, odd-odd vs even-even staggering in the observed values. The experimental results are analyzed in the context of state-of-the-art nuclear density-functional model calculations.

16.
Phys Rev Lett ; 123(8): 082501, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31491233

RESUMO

The elusive ß^{-}p^{+} decay was observed in ^{11}Be by directly measuring the emitted protons and their energy distribution for the first time with the prototype Active Target Time Projection Chamber in an experiment performed at ISAC-TRIUMF. The measured ß^{-}p^{+} branching ratio is orders of magnitude larger than any previous theoretical model predicted. This can be explained by the presence of a narrow resonance in ^{11}B above the proton separation energy.

17.
Phys Rev Lett ; 122(23): 232701, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298878

RESUMO

The ^{23}Al(p,γ)^{24}Si reaction is among the most important reactions driving the energy generation in type-I x-ray bursts. However, the present reaction-rate uncertainty limits constraints on neutron star properties that can be achieved with burst model-observation comparisons. Here, we present a novel technique for constraining this important reaction by combining the GRETINA array with the neutron detector LENDA coupled to the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The ^{23}Al(d,n) reaction was used to populate the astrophysically important states in ^{24}Si. This enables a measurement in complete kinematics for extracting all relevant inputs necessary to calculate the reaction rate. For the first time, a predicted close-lying doublet of a 2_{2}^{+} and (4_{1}^{+},0_{2}^{+}) state in ^{24}Si was disentangled, finally resolving conflicting results from two previous measurements. Moreover, it was possible to extract spectroscopic factors using GRETINA and LENDA simultaneously. This new technique may be used to constrain other important reaction rates for various astrophysical scenarios.

18.
Phys Rev Lett ; 122(22): 222501, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283300

RESUMO

A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus ^{42}Si-going beyond earlier comparisons of excited-state energies-is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying ^{42}Si(2_{1}^{+}) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich ^{42}Si with a one-proton removal reaction from ^{43}P projectiles at 81 MeV/nucleon. The measured cross sections to the individual ^{42}Si final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0^{+} states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13) keV in ^{42}Si is proposed to be the (0_{2}^{+}) level.

19.
J Eur Acad Dermatol Venereol ; 33(1): 198-203, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29972866

RESUMO

BACKGROUND: Sarcoidosis, characterized by epithelioid granulomas, is considered to be caused by a complex interplay between genetics and environmental agents. It has been hypothesized that exogenous inorganic particles as crystalline silica could be a causal or adjuvant agent in sarcoidosis onset. OBJECTIVES: To investigate the location, frequency and physicochemical characteristics of foreign materials and mineral tissue deposits in the granulomatous area of cutaneous sarcoidosis. METHODS: Skin biopsies (n = 14) from patients diagnosed with cutaneous sarcoidosis (mean age 43 years; 11 patients with extracutaneous involvement) were investigated using polarized light examination (PLE), µFourier Transform Infra-Red (µFT-IR) spectroscopy and Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (FE-SEM/EDX). RESULTS: Combined PLE, µFT-IR, FE-SEM/EDX analysis allowed to characterize mineral deposits in 7/14 biopsies (50%). It identified crystalline silica (SiO2 ) inside granulomas in three biopsies and calcite (CaCO3 ) at their periphery in 4. CONCLUSION: This study emphasizes the need of using combined methods for assessment of mineral deposits in granulomatous diseases. According to the location and characteristics of deposits, we can hypothesize that SiO2 particles contribute to the granuloma formation, whereas CaCO3 deposits are related to the granuloma biology. However, the significance of the association between SiO2 deposits and sarcoidosis is still disputed.


Assuntos
Carbonato de Cálcio/análise , Granuloma/metabolismo , Sarcoidose/metabolismo , Dióxido de Silício/análise , Dermatopatias/metabolismo , Pele/química , Adulto , Idoso , Fenômenos Químicos , Feminino , Granuloma/induzido quimicamente , Humanos , Compostos Inorgânicos , Masculino , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Pessoa de Meia-Idade , Sarcoidose/patologia , Dióxido de Silício/efeitos adversos , Pele/patologia , Dermatopatias/patologia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Adulto Jovem
20.
Phys Rev Lett ; 121(13): 132501, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312098

RESUMO

The key parameter to discuss the possibility of the pion condensation in nuclear matter, i.e., the so-called Landau-Migdal parameter g^{'}, was extracted by measuring the double-differential cross sections for the (p,n) reaction at 216 MeV/u on a neutron-rich doubly magic unstable nucleus, ^{132}Sn with the quality comparable to data taken with stable nuclei. The extracted strengths for Gamow-Teller (GT) transitions from ^{132}Sn leading to ^{132}Sb exhibit the GT giant resonance (GTR) at the excitation energy of 16.3±0.4(stat)±0.4(syst) MeV with the width of Γ=4.7±0.8 MeV. The integrated GT strength up to E_{x}=25 MeV is S_{GT}^{-}=53±5(stat)_{-10}^{+11}(syst), corresponding to 56% of Ikeda's sum rule of 3(N-Z)=96. The present result accurately constrains the Landau-Migdal parameter as g^{'}=0.68±0.07, thanks to the high sensitivity of the GTR energy to g^{'}. In combination with previous studies on the GTR for ^{90}Zr and ^{208}Pb, the result of this work shows the constancy of this parameter in the nuclear chart region with (N-Z)/A=0.11 to 0.24 and A=90 to 208.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...