Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34372969

RESUMO

Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones ß-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.


Brain trauma or a stroke often lead to severe problems in posture and movement. These injuries frequently occur only on one side, causing asymmetrical motor changes: damage to the left brain hemisphere triggers abnormal contractions of the right limbs, and vice-versa. The injuries can disrupt neural tracts between the brain and the spinal cord, the structure that conveys electric messages to muscles. However, research has also shed light on new actors: the hormones released into the bloodstream by the pituitary gland. Similar to the effects of brain lesions, several of these molecules cause asymmetric posture in healthy rats. In fact, a group of hormones can trigger muscle contraction of the left back leg, and another of the right one. Could pituitary hormones mediate the asymmetric effects of brain injuries? To investigate this question, Lukoyanov, Watanabe, Carvalho, Kononenko, Sarkisyan et al. focused on rats in which the connection between the brain and the spinal cord segments that control the hindlimbs had been surgically removed. This stopped transmission of electric messages from the brain to muscles in the back legs. Strikingly, lesions on one side of the brain in these animals still led to asymmetric posture, with contraction of the leg on the opposite side of the body. These effects were abolished when the pituitary gland was excised. Postural asymmetry also emerged when blood serum from injured rats was injected into healthy animals. The findings suggest that hormones play an essential role in signalling from the brain to the spinal cord. Further experiments identified that two pituitary hormones, ß-endorphin and Arg-vasopressin, induced contraction of the right but not the left hindlimb of healthy animals. In addition, small molecules that inhibit these hormones could block the deficits seen on the right side after an injury on the left hemisphere of the brain. Taken together, these results show that neurons in the spinal cord are not just controlled by the neural tracts that descend from the brain, but also by hormones which have left-right side-specific actions. This unique signalling could be a part of a previously unknown hormonal mechanism that selectively targets either the left or the right side of the body. This knowledge could help to design side-specific treatments for stroke and brain trauma.


Assuntos
Lesões Encefálicas/fisiopatologia , Vias Neurais/fisiologia , Reflexo , Córtex Sensório-Motor/fisiologia , Animais , Lesões Encefálicas/metabolismo , Masculino , Vias Neurais/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
2.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200173

RESUMO

Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.


Assuntos
Encéfalo/metabolismo , Encefalinas/genética , Epigênese Genética/genética , Precursores de Proteínas/genética , Transcrição Gênica/genética , Analgésicos Opioides/metabolismo , Animais , Epigenômica/métodos , Regulação da Expressão Gênica/genética , Humanos , Neuropeptídeos/genética
3.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33903183

RESUMO

Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contralesional sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contralesional and ipsilesional hindlimb responses to the left-sided and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus, the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The µ-antagonist ß-funaltrexamine (FNA) and κ-antagonist nor-binaltorphimine (BNI) reduced postural asymmetry after the right but not left UBI. In contrast, the δ-antagonist naltrindole (NTI) inhibited HL-PA after the left but not right-side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system.


Assuntos
Lesões Encefálicas , Neuropeptídeos , Animais , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Receptores Opioides mu , Medula Espinal
4.
Transl Psychiatry ; 8(1): 122, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925858

RESUMO

Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.


Assuntos
Alcoolismo/genética , Encefalinas/genética , Córtex Pré-Frontal/fisiopatologia , Precursores de Proteínas/genética , Receptores Opioides kappa/genética , Alcoólicos , Alelos , Austrália , Estudos de Casos e Controles , Disfunção Cognitiva/etiologia , Regulação para Baixo , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
5.
Brain Res ; 1695: 78-83, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29852138

RESUMO

The endogenous opioid system (EOS) controls the processing of nociceptive stimuli and is a pharmacological target for opioids. Alterations in expression of the EOS genes under neuropathic pain condition may account for low efficacy of opioid drugs. We here examined whether EOS expression patterns are altered in the lumbar spinal cord of the rats with spinal nerve ligation (SNL) as a neuropathic pain model. Effects of the left- and right-side SNL on expression of EOS genes in the ipsi- and contralateral spinal domains were analysed. The SNL-induced changes were complex and different between the genes; between the dorsal and ventral spinal domains; and between the left and right sides of the spinal cord. Prodynorphin (Pdyn) expression was upregulated in the ipsilateral dorsal domains by each the left and right-side SNL, while changes in expression of µ-opioid receptor (Oprm1) and proenkephalin (Penk) genes were dependent on the SNL side. Changes in expression of the Pdyn and κ-opioid receptor (Oprk1) genes were coordinated between the ipsi- and contralateral sides. Withdrawal response thresholds, indicators of mechanical allodynia correlated negatively with Pdyn expression in the right ventral domain after right side SNL. These findings suggest multiple roles of the EOS gene products in spinal sensitization and changes in motor reflexes, which may differ between the left and right sides.


Assuntos
Analgésicos Opioides/farmacologia , Expressão Gênica/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Peptídeos Opioides/genética , Medula Espinal/efeitos dos fármacos , Animais , Expressão Gênica/genética , Neuralgia/metabolismo , Peptídeos Opioides/metabolismo , Limiar da Dor/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/metabolismo , Medula Espinal/metabolismo , Nervos Espinhais/metabolismo
6.
Mol Neurobiol ; 55(8): 7049-7061, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29383684

RESUMO

Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.


Assuntos
Alcoólicos , Dopamina/metabolismo , Dinorfinas/metabolismo , Receptores Opioides kappa/metabolismo , Recompensa , Estudos de Casos e Controles , Dinorfinas/genética , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Núcleo Accumbens/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Opioides kappa/genética
7.
Cereb Cortex ; 28(9): 3129-3142, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968778

RESUMO

Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.


Assuntos
Encefalinas/biossíntese , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Precursores de Proteínas/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA/genética , Encefalinas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Precursores de Proteínas/genética , Transcrição Gênica , Fatores Estimuladores Upstream/metabolismo
8.
FASEB J ; 31(5): 1953-1963, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28122917

RESUMO

Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.-Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits.


Assuntos
Analgésicos Opioides/metabolismo , Rede Nervosa/metabolismo , Receptores Opioides/metabolismo , Medula Espinal/metabolismo , Animais , Masculino , Neuropeptídeos/metabolismo , Dor/metabolismo , Ratos Long-Evans , Receptores Opioides/genética
10.
Biochim Biophys Acta Gen Subj ; 1861(2): 246-255, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838394

RESUMO

BACKGROUND: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS: Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS: Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE: High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.


Assuntos
Núcleo Caudado/metabolismo , Núcleo Celular/metabolismo , Peptídeos Opioides/metabolismo , Isoformas de Proteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Dinorfinas/metabolismo , Encefalinas/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Adulto Jovem
11.
Front Cell Neurosci ; 9: 187, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029055

RESUMO

The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.

12.
Front Cell Neurosci ; 8: 415, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538565

RESUMO

Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.

13.
Front Cell Neurosci ; 8: 288, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278838

RESUMO

The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.

14.
Biochim Biophys Acta ; 1839(11): 1226-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25220237

RESUMO

The dynorphin κ-opioid receptor system is implicated in mental health and brain/mental disorders. However, despite accumulating evidence that PDYN and/or dynorphin peptide expression is altered in the brain of individuals with brain/mental disorders, little is known about transcriptional control of PDYN in humans. In the present study, we show that PDYN is targeted by the transcription factor REST in human neuroblastoma SH-SY5Y cells and that that interfering with REST activity increases PDYN expression in these cells. We also show that REST binding to PDYN is reduced in the adult human brain compared to SH-SY5Y cells, which coincides with higher PDYN expression. This may be related to MIR-9 mediated down-regulation of REST as suggested by a strong inverse correlation between REST and MIR-9 expression. Our results suggest that REST represses PDYN expression in SH-SY5Y cells and the adult human brain and may have implications for mental health and brain/mental disorders.


Assuntos
Encéfalo/metabolismo , Encefalinas/genética , Transtornos Mentais/genética , Neurônios/metabolismo , Precursores de Proteínas/genética , Proteínas Repressoras/fisiologia , Adulto , Encéfalo/patologia , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Encefalinas/metabolismo , Regulação da Expressão Gênica , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , MicroRNAs/fisiologia , Neurônios/patologia , Precursores de Proteínas/metabolismo
15.
Front Cell Neurosci ; 8: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523671

RESUMO

Glutamate is the main excitatory transmitter in the human brain. Drugs that affect the glutamatergic signaling will alter neuronal excitability. Ethanol inhibits glutamate receptors. We examined the expression level of glutamate receptor subunit mRNAs in human post-mortem samples from alcoholics and compared the results to brain samples from control subjects. RNA from hippocampal dentate gyrus (HP-DG), orbitofrontal cortex (OFC), and dorso-lateral prefrontal cortex (DL-PFC) samples from 21 controls and 19 individuals with chronic alcohol dependence were included in the study. Total RNA was assayed using quantitative RT-PCR. Out of the 16 glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA2 and GluA3; three kainate receptor subunits GluK2, GluK3 and GluK5 and five NMDA (N-methyl-D-aspartate) receptor subunits GluN1, GluN2A, GluN2C, GluN2D, and GluN3A were significantly increased in the HP-DG region in alcoholics. In the OFC, mRNA encoding the NMDA receptor subunit GluN3A was increased, whereas in the DL-PFC, no differences in mRNA levels were observed. Our laboratory has previously shown that the expression of genes encoding inhibitory GABA-A receptors is altered in the HP-DG and OFC of alcoholics (Jin et al., 2011). Whether the changes in one neurotransmitter system drives changes in the other or if they change independently is currently not known. The results demonstrate that excessive long-term alcohol consumption is associated with altered expression of genes encoding glutamate receptors in a brain region-specific manner. It is an intriguing possibility that genetic predisposition to alcoholism may contribute to these gene expression changes.

16.
Addict Biol ; 18(1): 161-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21955155

RESUMO

The endogenous opioid system (EOS) plays a critical role in addictive processes. Molecular dysregulations in this system may be specific for different stages of addiction cycle and neurocircuitries involved and therefore may differentially contribute to the initiation and maintenance of addiction. Here we evaluated whether the EOS is altered in brain areas involved in cognitive control of addiction including the dorsolateral prefrontal cortex (dl-PFC), orbitofrontal cortex (OFC) and hippocampus in human alcohol-dependent subjects. Levels of EOS mRNAs were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and levels of dynorphins by radioimmunoassay (RIA) in post-mortem specimens obtained from 14 alcoholics and 14 controls. Prodynorphin mRNA and dynorphins in dl-PFC, κ-opioid receptor mRNA in OFC and dynorphins in hippocampus were up-regulated in alcoholics. No significant changes in expression of proenkephalin, and µ- and δ-opioid receptors were evident; pro-opiomelanocortin mRNA levels were below the detection limit. Activation of the κ-opioid receptor by up-regulated dynorphins in alcoholics may underlie in part neurocognitive dysfunctions relevant for addiction and disrupted inhibitory control.


Assuntos
Alcoolismo/metabolismo , Comportamento Aditivo/metabolismo , Peptídeos Opioides/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Receptores Opioides/metabolismo , Adaptação Fisiológica/genética , Adulto , Alcoolismo/genética , Alcoolismo/fisiopatologia , Análise de Variância , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/fisiopatologia , Estudos de Casos e Controles , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Peptídeos Opioides/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , Radioimunoensaio/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Recompensa , Estatísticas não Paramétricas , Regulação para Cima/fisiologia
17.
Int J Neuropsychopharmacol ; 16(5): 975-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23101464

RESUMO

Synthetic κ-opioid receptor (KOR) agonists induce dysphoric and pro-depressive effects and variations in the KOR (OPRK1) and prodynorphin (PDYN) genes have been shown to be associated with alcohol dependence. We genotyped 23 single nucleotide polymorphisms (SNPs) in the PDYN and OPRK1 genes in 816 alcohol-dependent subjects and investigated their association with: (1) negative craving measured by a subscale of the Inventory of Drug Taking Situations; (2) a self-reported history of depression; (3) the intensity of depressive symptoms measured by the Beck Depression Inventory-II. In addition, 13 of the 23 PDYN and OPRK1 SNPs, which were previously genotyped in a set of 1248 controls, were used to evaluate association with alcohol dependence. SNP and haplotype tests of association were performed. Analysis of a haplotype spanning the PDYN gene (rs6045784, rs910080, rs2235751, rs2281285) revealed significant association with alcohol dependence (p = 0.00079) and with negative craving (p = 0.0499). A candidate haplotype containing the PDYN rs2281285-rs1997794 SNPs that was previously associated with alcohol dependence was also associated with negative craving (p = 0.024) and alcohol dependence (p = 0.0008) in this study. A trend for association between depression severity and PDYN variation was detected. No associations of OPRK1 gene variation with alcohol dependence or other studied phenotypes were found. These findings support the hypothesis that sequence variation in the PDYN gene contributes to both alcohol dependence and the induction of negative craving in alcohol-dependent subjects.


Assuntos
Alcoolismo/genética , Encefalinas/genética , Predisposição Genética para Doença/genética , Transtornos do Humor/genética , Polimorfismo de Nucleotídeo Único/genética , Precursores de Proteínas/genética , Alcoolismo/complicações , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Transtornos do Humor/etiologia , Receptores Opioides kappa/genética
18.
PLoS One ; 7(6): e39605, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768096

RESUMO

Single-stranded DNA (ssDNA) is characterized by high conformational flexibility that allows these molecules to adopt a variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy to show that cytosine methylation at CpG sites affects the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin) fragments were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR spectroscopy. The oligonucleotides displayed secondary structures at 4°C, and some also at 37°C. Methylation at CpG sites prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA.


Assuntos
Ilhas de CpG/genética , Metilação de DNA/genética , DNA de Cadeia Simples/metabolismo , Dinorfinas/genética , Conformação de Ácido Nucleico , Oligonucleotídeos/metabolismo , Fases de Leitura Aberta/genética , Sequência de Bases , Dicroísmo Circular , DNA de Cadeia Simples/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Oligonucleotídeos/genética , Software
19.
Addict Biol ; 16(3): 499-509, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21521424

RESUMO

The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single-nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG-SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl-PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol-dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG-SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl-PFC of alcoholics, methylation levels of the C, non-risk variant of 3'-untranslated region (3'-UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA-binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism-associated PDYN 3'-UTR CpG-SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non-risk allele(s) to develop alcohol dependence.


Assuntos
Alcoolismo/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Encefalinas/genética , Polimorfismo de Nucleotídeo Único/genética , Córtex Pré-Frontal/metabolismo , Precursores de Proteínas/genética , Regiões 3' não Traduzidas/genética , Adulto , Idoso , Alcoolismo/patologia , Alelos , Epigenômica , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino
20.
Brain Res ; 1385: 18-25, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21338584

RESUMO

Single nucleotide polymorphism (rs1997794) in promoter of the prodynorphin gene (PDYN) associated with alcohol-dependence may impact PDYN transcription in human brain. To address this hypothesis we analyzed PDYN mRNA levels in the dorsolateral prefrontal cortex (dl-PFC) and hippocampus, both involved in cognitive control of addictive behavior and PDYN promoter SNP genotype in alcohol-dependent and control human subjects. The principal component analysis suggested that PDYN expression in the dl-PFC may be related to alcoholism, while in the hippocampus may depend on the genotype. We also demonstrated that the T, low risk SNP allele resides within noncanonical AP-1-binding element that may be targeted by JUND and FOSB proteins, the dominant AP-1 constituents in the human brain. The T to C transition abrogated AP-1 binding. The impact of genetic variations on PDYN transcription may be relevant for diverse adaptive responses of this gene to alcohol.


Assuntos
Alcoolismo/genética , Alcoolismo/metabolismo , Encefalinas/genética , Hipocampo/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas/genética , Precursores de Proteínas/genética , Fator de Transcrição AP-1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Alcoolismo/patologia , Sítios de Ligação/genética , Encefalinas/biossíntese , Regulação da Expressão Gênica , Genótipo , Células HeLa , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/patologia , Precursores de Proteínas/biossíntese , Fator de Transcrição AP-1/biossíntese , Fator de Transcrição AP-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...