Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 498: 313-322, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28343129

RESUMO

Ultrasound-assisted dispersive solid phase microextraction followed by UV-Vis spectrophotometry (UA-DSPME UV-Vis) was designed for the extraction and preconcentration of Carbaryl using nano-sized molecularly-imprinted polymer (MIP-NP). Nano-sized Carbaryl-imprinted polymer was characterized by scanning electron microscopy. A preliminary Plackett-Burman design was applied for screening. Subsequently, central composite design under response surface methodology was used to investigate and model the Carbaryl adsorption as response as well as to optimize this response versus variables such as Carbaryl MIP-NP mass, sonication time, temperature, eluent volume, pH and vortex time. At optimum experimental conditions, UAMSPE-UV-Vis exhibited a linear range of 0.1-1.2mgL-1. The enhancement and preconcentration factors were obtained to be 30.6 and 25.0, respectively, for the extraction of Carbaryl by MIP-NP. In addition, the values of 0.033 and 0.11mgL-1 were obtained for limit of detection and limit of quantification, respectively. The value of 4.3% determined for relative standard deviation for the separation and preconcentration of Carbaryl after 5 repetitions shows the acceptable repeatability of the process. Finally, the developed method was successfully applied for the determination of Carbaryl in water samples.

2.
Ultrason Sonochem ; 32: 119-131, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27150752

RESUMO

Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 138: 176-86, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25498812

RESUMO

Erythrosine adsorption (Er) onto ZnS and AgOH nanoparticle-loaded activated carbon (ZnS-NP-AC and AgOH-NP-AC) was studied and results were compared. Subsequent preparation were fully analyzed by different approach such as BET to obtain knowledge about surface area, pore volume, while FT-IR analysis give comprehensive information about functional group the dependency of removal percentage to adsorbent mass, initial Er concentration and contact time were investigated and optimum conditions for pH, adsorbent dosage, Er concentration and contact time was set as be 3.2, 0.016g, 20mg/L and 16min and 3.2, 0.015g, 19mg/L and 2min for ZnS-NP-AC and AgOH-NP-AC, respectively. The equilibrium data correspond to adsorption strongly follow Langmuir model by ZnS-NP-AC and Freundlich model for AgOH-NP-AC. High adsorption capacity for of 55.86-57.80mgg(-1) and 67.11-89.69mgg(-1) for ZnS-NP-AC and AgOH-NP-AC, respectively. The result of present study confirm the applicability of small amount of these adsorbent (<0.02g) for efficient removal of Er (>95%) in short reasonable time (20min).


Assuntos
Carbono/química , Carvão Vegetal/química , Corantes/isolamento & purificação , Eritrosina/isolamento & purificação , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Óxidos/química , Compostos de Prata/química , Sulfetos/química , Compostos de Zinco/química , Adsorção , Técnicas de Química Analítica , Corantes/química , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Estatísticos , Valor Preditivo dos Testes , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...